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The purpose of this monograph is to give an axiomatic
foundation for the theory of probability. The author set himself
the task of putting in their natural place, among the general
notions of modern mathematies, the basic concepts of probability
theory—econcepts which until recently were considered to be quite
peculiar.

This task would have been a rather hopeless one before the
introduction of Lebesgue's theories of measure and integration.
‘However, after Lebesgue’s publication of his investigations, the
analogies between measure of a set and probability of an event,
and between integral of a function and mathematical expectation
of & random variable, became apparent. These analogies allowed
of further extensions; thus, for example, various properties of
independent random variables were seen to be in complete analogy
with the corresponding properties of orthogonal functions. But
if probability theory was to be based on the above analogies, it
still was necessary to make the theories of measure and integra-
tion independent of the geometric elements which were in the
foreground with Lebesgue. This has been done by Fréchet.

While a conception of probability theory based on the above
general viewpoints has been current for some time among certain
mathematicians, there was lacking a complete exposition of the
whole system, free of extraneous complications. (CE., however,
the book by Fréchet, [2] in the bibliography.)

Twish to call attention to those points of the present exposition
which are outside the above-mentioned range of ideas familiar to
the specialist. They are the following: Probability distributions
in infinite-dimensional spaces (Chapter 111, § 4) ; differentiation
and integration of mathematical expectations with respect to &
parameter (Chapter IV, § 5) ; and especially the theory of condi-
tional probabilities and conditional expectations (Chapter V).
1t should be emphasized that these new problems arose, of neces-
sity, from some perfectly concrete physical problems.!

G, e, the paper by M. Leontovich quated n footrote 6 on . 46; aeo the
joint papes by the suthor and M. Laontovich, Zur Statisith dor huntimudor-
ichen'Systere und dsa seftichen Verlaufes dor Phyeikaiischon Vorginge.

Phys. Jour. of the USSR, Vol. 5, 1983, pp. 86-65.
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‘The sixth chapter contains a survey, without proofs, of some
results of A. Khinchine and the author of the limitations on the
‘applicability of the ordinary and of the strong law of large num-
bers. The bibliography cantains some recent works which should
be of interest from the point of view of the foundations of the
subject.

1 wish to express my warm thanks to Mr. Khinchine, who
has read carefully the whole manuscript and proposed several
improvements.

Kljasma near Moscow, Easter 1933,

A. Kolmogorov
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Chapter T

ELEMENTARY THEORY OF PROBABILITY

We define as clementary theory of probability that part of
the theory in which we have to deal with probabilities of only a
finite number of events. The theorems which we derive here can
be applied also to the problems connected with an infinite number
of random events. However, when the latter are studied, essen-
tially new principles are used. Therefore the only axiom of the
‘mathematical theory of probability which deals particularly with
the case of an infinite number of random events is not introduced
until the beginning of Chapter IT (Axiom VI).

The theory of probability, as a mathematical discipline, can
and should be developed from axioms in exactly the same way
‘as Geometry and Algebra. This means that after we have defined
the elements to be studied and their basic relations, and have
stated the axioms by which these relations are to be governed,
all further exposition must be based exclusively on these axioms,
independent of the usual concrete meaning of these elements and
their relations.

In accordance with the above, in § 1 the concept of a field of
probabilities is defined as a system of sets which satisfies certain
conditions. What the elements of this set represent is of o im-
portance in the purely mathematical development of the theory
of probability (cf. the introduction of basic geometric concepts
in the Foundations of Geometry by Hilbert, or the definitions of
groups, rings and fields in abstract algebra).

Every axiomatic (abstract) theory admits, as is well known,
of an unlimited number of concrete interpretations besides those
from which it was derived. Thus we find applications in fields of
science which have no relation to the concepts of random event.
and of probability in the precise meaning of these words.

The postulational basis of the theory of probability can be
established by different methods in respect to the selection of
axioms as well as in the selection of basic concepts and relations.
However, if our aim s to achieve the utmost simplicity both in
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the system of axioms and in the further development of the
theory, then the postulational concepts of a random event and
its probability seem the most suitable. There are other postula-
tional systems of the theory of probability, particularly those in
‘which the concept of probability is not treated as one of the basic
concepts, but is itself expressed by means of other concepts.
However, in that case, the aim is different, namely, to tie up as
closely as possible the mathematical theory with the empirical
development of the theory of probability.

§1. Axioms®

Let 5 be a collection of elements ¢, 7, ¢, . . ., which we shall call
elementary events, and § a set of subsets of E; the elements of
the set  will be called random events.

L. §is a field® of sets.
1L  contains the set E.
1L To cach set A in § is assigned a non-negative real number
P(A). This number P(A) is called the probability of the event A.
V. P(E) equals 1.
V. If Aand B have no element in common, then
P(4+B) =P(4) +P(B)

A system of sets, §, together with a definite assignment of
numbers P(4), satistying Axioms I-V, is called a field of prob-
ability.

Our system of Axioms I-V is consistent. This is proved by the
following example, Let E consist of the single element ¢ and let §
consist of £ and the null set 0. P(E) is then set equal to 1 and
P(0) equals 0,

For sxample, R. von Mises{1]and [2] and S, Bernstein [1].

> The reader who wishes from the outset to give & conerete meaning to the
following axiome, is referred t0 §5.

*»C. Hausoours, Mengenlehre, 1927, p. T8, A system of sets s called a fild
if the sum, product, and differencs of £ sets f the system aiso belong to the.
same eyatem, Every non-empty feld containa the nul 36 0. Using HausdoriTs
Hotation, we desigate 4 By AR the sumt b A 5 i
the cass where A1 i the general case by 4 F B the dierence of
A'and B by A~ 5. The set B~ A, which 1y the comploment of A, will be denoted

" We thail assum that the reader is famiiar with the {uhdamental roles
of operations of sets and their sums, products, and diferences. A1l subsets
ot il be designated by Latin capitats.

§2 The Relation to Experimental Data 3

Our system of axioms is not, however, complete, for in various
problems in the theory of probability different fields of proba-
bility have to be examined.

The Construction of Fields of Probability. The simplest fields
of probability are constructed as follows. We take an arbitrary
finite set E= (£, &, ... &) and an arbitrary set {fy, s, ps}
of non-negative numbers with the sum p, + B + . - - + B
 is taken as the set of all subsets in &, and we put

Plb b B} = B Bt B

In such cases, p., ps, . - . , s are called the probabilities of the
elementary events &, & . . . , & or simply elementary probabili-
ties. In this way are derived all possible finite fields of probability
in which § consists of the set of all subsets of E. (The field of
probability is called finite if the set £ is finite.) For further
examples see Chap. I1, § 3.

§2. The Relation to Experimental Data*

We apply the theory of probability to the actual world of
experiments in the following manner:

1) There is assumed a complex of conditions, , which allows
of any number of repetitions.

2) We study a definite set of events which could take place as
a result of the establishment of the conditions . In individual
cases where the conditions are realized, the events occur, gener-
ally, in different ways. Let & be the set of all possible variants
£, £« - - of the outcome of the given events. Some of these vari-
ants might in general not occur. We include in set £ all the vari-
ants which we regard a priori as possible.

3) If the variant of the events which has actually occurred

“The reader who is interested in the purely mathematical development of
the theory nly, nead nok read Chs section, since the work following i 1s based
oniy wpon the sxioms in § 1 and makes o use of the present disctasion, Here
e limbt ourseives 108 siimple explanation of how the axioms of the theory of
Drobability aroee and dieregard the deep philosophical dissertations on the
Eoncept of probebilty in the sxperimental world, n establishing the premises
eceetary for the Applicabiliy of the theory of probabilit 1 the world of
Rctual events, the author has wsed,in Jarge measure, the work of . v. Mises,
[EirNiea
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upon realization of conditions & belongs to the set A (defined in
any way), then we say that the event A has taken place.

Ezample: Let the complex & of conditions be the tossing of a
coin two times. The set of events mentioned in Paragraph Dcon-
sists of the fact that at each toss either a head or tail may come up,
From this it follows that only four different variants (elementary
events) are possible, namely: HH, HT, TH, TT. If the “event A"
connotes the occurrence of a repetition, then it will consist of a
happening of either of the first or fourth of the four elementary

events. In this manner, every event may be regarded as a set of
clementary events.

4) Under certain conditions, which we shall not discuss here,
We may assume that to an event A which may or may not occur

under conditions @, is assigned a real number P(4) which has
the following characteristics :

(@) One can be practically certain that if the complex of con-
ditions & is repeated a large number of times, #, then if m be the
number of occurrences of event A, the ratio m/n will differ very
slightly from P(4).

() £ P(4) is very small, one can be practically certain that
when conditions & are realized only once, the event A would not
occur at all

The Empirical Deduction of the Azioms. In general, one may
assume that the system 7 of the obscrved events 4, B, C, . . . to
which are assigned definite probabilities, form a field containing
as an element the set £ (Axioms I, 11, and the first part of
111, postulating the existence of probabilities). It is clear that

m/n=1 50 that the second part of Axiom I11 is quite natural.
For the event E, m is always equal to n, so that it is natural to
postulate P(E) =1 (Axiom V). If, finally, A and B are non-
intersecting (incompatible), then m = m, + m, where m, m,, m,
are respectively the number of experiments in which the events
4 + B, 4, and B occur. From this it follows that

-

It therefore seems appropriate to postulate that P(A + B) =
P(4) +P(B) (Axiom V)

§3. Notes on Terminology 5

Remark 1. If two separate statements are each practically
relible, then we may say that simultancously they are both x:::,
able,although the dogreeof relabilty is somewhat lowered in the
process. If, however, the number of such statements is very large,
then from the practical reliability of each, one cannot deduce any-
thing about the simultaneous correctness of all of them. Therefore
from the principle sated in (a) it dos not follow that in a very
large number of series of n tests each, in each the ratio m/n wil
differ only slightly from P(4).

Remark 2. To an impossible event (an empty set) corre-
sponds, in accordance with our axioms, the probability P(0) =
but the converse is not true: P(4) = 0 does not imply the im-

possibility of A. When P(4) = 0, from principle (b) all we can
assert is that when the conditions & are realized but once, event
A'fis practically impossible. I does not at all assert, however, that
in a sufficiently long series of tests the event A will not occur. On
the other hand, one can deduce from the principle (a) merely that
when P(4) = 0 and n is very large, the ratio m/n will be very
small (it might, for example, be equal to 1/n).

§3. Notes on Terminology

r dy, random
We have defined the objects of our future stu
events, as sets. However, in the theory of probability many set-
theoretic concepts are designated by other terms. We shall give
here a brief list of such concepts.

Theory of Sets Random Events
1. A and B do ot intersect, 1. Events A and B are in-
iie, AB = 0. compatible.
2. AB..N 2. Events 4, B, ..., N are
) incompatible.

3. Event X is defined as the
simultaneous occurrence of
events 4,B,...,N.

4. Event X is defined as the
occurrence of at least one of
the events 4, B, N.

TGt 84, Formula (3)
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Theory of Sets
The complementary set

Random Events

5. The opposite event A
consisting of the non-occur-
ence of event A.

6. Event 4 is impossible.

7. Event A must oceur.

8. Ezperiment ¥ consists of
determining which of the
events 4, 4s, . ., A, oceurs.
We therefore call 4,, 4, . .
A, the possible results of ex-
periment %1,

6 A=0.

7 4=E.

8. The system % of the sets
Ay Ay ..., Au forms a de-
composition of the set. E if
At Ayt + A=

(This assumes that the
sets A,do ot intersect,in
pairs.)

9. Bisasubsetof 4: BeA.

9. From the occurrence of
event B follows the inevitable
occurrence of A.

§4. Immediate Corollaries of the Axioms; Conditional
Probabilities; Theorem of Bayes

From A + 4 = E and the Axioms IV and V it follows that

PA4) +P(A) =1 [t
P(d) =1-P(4) . @
Since £ = 0, then, in particular,
P(0)=0 . @)
If 4B, ..., N are incompatible, then from Axiom V follows

the formula (the Addition Theorem)

PA+B+... +N)=P(A) + P(B)+...+ P(N). (4)
If P(A) >0, then the quotient
Pup) = B4R ®

is defined to be the conditional probability of the event B under
the condition 4.

From (5) it follows immediately that

§4. Immediate Corallaries of the Axioms 1
P(AB) =P(4)Pu(B) . ()
And by induction we obtain the general formula (the Multi-
plication Theorem)
Pldydy . Aa) = P(A) P, (4 P, (43 - Pt s (A (T
The following theorems follow easily :

PABYZ O, (8
PAE)=1, 9)
Pu(B + €)= P,(B) +P,(C) (10)

Comparing formulae (8)—(10) with axioms 11—V, we find that
the system § of sets together with the set function P,(B) (pro-
vided A is a fixed set), form a field of probability and therefore,
all the above general theorems concerning P(B) hold true for the
conditional probability P,(B) (provided the event 4 is fixed).
1t is also easy to see that
Pud)=1. an
From (6) and the analogous formula
P (AB) = P(B)Py(4)
we obtain the important formula:
Pad) = PO, an
‘which contains, in essence, the Theorem of Bayes.
‘THE THEOREM ON TOTAL PROBABILITY: Let A, + A, + ...+
A. = E (this assumes that the events 4,, 4,, ..., A, are mutually
exclusive) and let X be arbitrary. Then
P(X) = P(A}) Py (X) + P(Ay) Pay(X) + -
Proof:

+P(A) P, (X).. (18)

X=AX+AX+... +AX;
using (4) we have
P(X) = P(4, X) +P(A: X) +...+ P(A, X)
and according to (6) we have at the same time
P(AX) = P(A)P,, (X).
TuE THEOREM OF BAYES: Let A, + A, +
X be arbitrary, then

Pr(d) =

+4,=F and

(49 P (X)

PP () + PPN + - + PA) Pa®) [(14)
=123, ...m
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. Au .. ., A are often called “hypotheses” and formula
(14) is considered as the probability Px(A,) of the hypothesis
A, after the occurrence of event X. [P(A) then denotes the
a priori probability of 4.]

Proof: From (12) we have

Pr(d) = PP )

PX)

To obtain the formula (14) it only remains to substitute for the
probability P(X) its value derived from (13) by applying the
theorem on total probability.

§5. Independence

The concept of mutual independence of two or more experi-
ments holds, in a certain sense, a central position in the theory of
probability. Indeed, as we have already seen, the theory of
probability can be regarded from the mathematical point of view
as a special applieation of the general theory of additive set func-
tions. One naturally asks, how did it happen that the theory of
‘probability developed into a large individual science possessing
its own methods?

In order to answer this question, we must point out the spe-
cialization undergone by general problems in the theory of addi-
tive set functions when they are proposed in the theory of
probability.

‘The fact that our additive set function P(A) is non-negative
and satisfies the condition P(E) = 1, does not in itself cause new
dificulties. Random variables (sce Chap. I1I) from a mathe-
‘matical point of view represent merely functions measurable with
respect to P(A), while their mathematical expectations are
abstract Lebesgue integrals. (This analogy was explained fully
for the first time in the work of Fréchet*.) The mere introduction
of the above concepts, therefore, would not be sufficient to pro-
duce a basis for the development of a large new theory.

Historically, the independence of experiments and random
variables represents the very mathematical concept that has given
the theory of probability its peculiar stamp. The classical work
or LaPlace, Poisson, Tehebychey, Markov, Liapounoy, Mises, and

Sen Fréchet [1] and (2],

§5. Independence 9

Bernstein is actually dedicated to the fundamental investigation
of series of independent random variables. Though the latest
dissertations (Markov, Bernstein and others) frequently fail to
assume complete independence, they nevertheless reveal the
necessity of introducing analogous, weaker, conditions, in order
to obtain sufficiently significant results (see in this chapter § 6,
Markov chains).

We thus see,in the concept of independence, at least the germ
of the peculiar type of problem in probability theory. In this
ook, however, we shall not stress that fact, for here we are
interested mainly in the logical foundation for the specialized
investigations of the theory of probability.

In consequence, one of the most important problems in the
philosophy of the natural sciences is—in addition to the well-
known one regarding the essence of the concept of probability
itself—to make precise the premises which would make it possible
1o regard any given real events as independent. This question,
however, is beyond the scope of this book.

Let us turn to the definition of independence. Given » experi-
ments A, AD, ..., A, that is, n decompositions

E= AP+ a0+ oo 4 4
of the basic set . It is then possible to assign r = r,7,
bilities (in the general case)

Pasncn = PALAT ATz 0
‘which are entirely arbitrary except for the single condition’ that
s, P =t a

DEFINITION L. n experiments 4, 9,
mutually independent, if for any q, qa, . .
equation holds true:

Pl 42

, A are called
-+ @ the following

=PUMPAT)...PAY) . @

G ot o by i b gl
R ST STy e sty s o
o o e oo el ity e Gl B epagt
omEi o i e T o Ty PoRE
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Among the r equations in (2), there are only r-r,-r.—
n-1 independent equations".

THEOREM L. If n experiments %), ), . .. , U are mutu-
ally independent, then any m of them (m<n), %%, ...
are also independent?.

In the case of independence we then have the equations

PARAL . A7) =PAR)P(4)... P4) @)
(all §, must be different.)
DEFINITION IL n events Ay, Ay, .. ., A, are mutually indepen-
dent, if the decorpositions (trials)
E=Avt A *=12.m)

are independent.

Inthiscaser, =7, = ... = r, = 2,7 = 2+; therefore, of the 2
equations in (2) only 2»-n -1 are independent. The necessary
and sufficient conditions for the independence of the events A,, s,
A, are the following 2» —n- 1 equations™:

Py Ay Ai) = PAYP(AL) . P(A), @
1.2,.0m,
1S <h<o<sn

All of these equations are mutually independent.
In the case n = 2 we obtain from (4) only one condition (22~

"+ Actually, in the case of independence, one may choose arbitrarily only
T4, Drobabilities - P(41) 50 88 o comply with the n
0 = P

S
the general casey we have 71 degrees of frsadom, but i the
Case of Thdependsnen only - r et 7y

*To prove this it is suficient to show that from the mutual independence

of  decompoaitions Toflows the utual independence of the first n-1. Let us
Atsme that the equations (2) hod. Then

) <SP (AR AR A7)

ZP(AR) = P PUAT) .. P L

Pl A A

=Pl P ... P4,

azo.
* See 5. N. Bernatein (1] pp. 41-57. However, the reader can casily prove
s madlt (uaing mathematcal idction) . "

§5. Independence u

=1) for the independence of two events A, and ,:
P(Aid) = P(4)P(A). ®)

The system of equations (2) reduces itself, in this case, to three
equations, besides (5) :
P(A)P(A)
P(A)P(4:)
P(AIP(A)
which obviously follow from (5).%

It need hardly be remarked that from the independence of
the events A, Au, ..., Ay in pairs, ie. from the relations

P(AA) = P(A)P(4) ann

it does not at all follow that when n>>2 these events are inde-
pendent*. (For that we need the existence of all equations (4).)

In introducing the concept of independence,no use was made
of conditional probability. Our aim has been to explain as clearly
as possible,in a purely mathematical manner, the meaning of this
concept. Its applications, however, generally depend upon the
properties of certain conditional probabilities.

1f we assume that all probabilities P(4,) are positive, then
from the equations (3) it follows'* that

Patna . a0 (402) = P(4) . ®
From the fact that formulas (6) hold, and from the Multiplica-
tion Theorem (Formula (7), § 4), follow the formulas (2). We
obtain, therefore,

‘THEOREM II: A necessary and sufficient condition for inde-
‘pendence of experiments U, WD, . . ., A in the case of posi-
= P(d,) — Pl A)) = P(dy) — P(A) P(A) = P(A) {8 — Pl4)}
=Py Py ot

“'Ths can be shown by the following simple example (S. N. Bernstein) -
Letaet & compore of four clemente b £ 6. £ the ortespoding lemen-
ey robabities Py o o p are each Assiid 6 be X an

A={h &) B 8) €= {88}
1tis ey to compute that
PA) =p(B) =P(C)
P(AB)=P(BC) =P(AC) = %
PABC) =% + ()"
7o prove t one must keep in mind the definiton of conditional proba-

vty Formuls 5}, ) and eubsttue for the probabiltesof produci the
‘products of probabilities according to formula (3)-

33
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tive probabilities P(A?) is that the conditional probability of
the results A9 of experiments WO under the hypothesis that
several other tests AW, 4%, W60 have had definite results
49,49, 4%, ..., A9 is equal to the absolute probability
Pl4S).

On the basis of formulas (4) we can prove in an analogous
‘manner the following theorem:

TuEOREM IIL. If all probabilities P(Ay) are positie, then o
necessary and suffcient condition. for mutual independence of
the events A, Au, ..., Ay is the satisfaction of the equations
(4) = P(4) @
for any pairwise different iy i, . .., i iv

In the case n = 2 the conditions (7) reduce to two equations:

Pa(d) = Pldy),

Pa(d) = P(dy).
Itis easy to see that the first equation in (8) alone is a necessary
and sufficient condition for the independence of A, and 4, pro-
vided P(4)) > 0.

Pag -

®

§6. Conditional Probabilities as Random Variables,
Markov Chains

Let % be a decomposition of the fundamental set
E=ActA+... 44,
and z a real function of the elementary event ¢, which for every

set A, is equal to a corresponding constant a,.  is then called a
random variable, and the sum

E(x) =ZaP(40)

is called the mathematical ezpectation of the variable z. The
theory of random variables will be developed in Chaps. 111 and IV.
We shall not limit ourselves there merely to those random vari-
ables which can assume only a finite number of different values.

A random variable which for every set A, assumes the value
P4y (B), we shall call the conditional probability of the event B
after the given ezperiment % and shall designate it by Pu(B). Two
experiments () and % are independent if, and only if

§6. Conditional Probabilities as Random Variables, Markov Chains 13

Pan(4) = P(47) g=12
Given any decompositions (experiments) %, A, ..., U, we
we shall represent by
qo g
the decomposition of set I into the products
AOALD L AD

Experiments %%, A,
and only when

, % are mutually independent when

Pann .. wa-n (49) = P(47),

k and q being arbitrary™
DEFINITION: The sequence (), ¥, ..., U, ... forms
a Markov chain if for arbitrary n and q

Panun .. - (4) = Pae- (4

Thus, Markov chains form a natural generalization of se-
quences of mutually independent experiments. 1f we set

Poasnm ) = Pagm (477) m<n

then the basic formula of the theory of Markov chains will assume
the form:

Punnlhe) = S o b m) bronlm,7), k<< [§¥]

1f we denote the matrix ||2ee(m, #)]| by p(m, n), (1) can be
written as'®:
() = p(em)p (m.n) k<m<n @

T ity of thes cndiionsfollos o Thsorem 11, 5 that they
e e o T A e
Wommai (- oF 1)

R Pl dbment o e ory o i i, e 1. . s
ARG LR R &
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INFINITE PROBABILITY FIELDS
§1. Axiom of Continuity
Wedenote by D A, as is customary, the product of the sets
Ay (whether finite or infinite in number) and their sum by & 4,,.
Only in the case of disjoint sets A. is the form 34, used instead
of 94_ Consequently,
CAn=Ai+ Ay oo,
ZAn = Ayt Ay +
A= a4,

In all future investigations, we shall assume that besides Axioms
1-V, still another holds true:

VL. For a deereasing sequence of events

A5 A D DAy )
of §, for which
=0, @
the following equation holds:
limP(4y) = 0. nw ®)

In the future we shall designate by probability field only a
field of probability as outlined in the first chapter, which also
satisfles Axiom V1. The fields of probability as defined in the first
chapter without Axiom VI might be called gencralized fields of
‘probability.

If the system  of sets is finite, Axiom V1 follows from Axioms.
1-V. For actually, in that case there exist only a finite number
of different sets in the sequence (1). Let Aq be the smallest
‘among them, then all sets A, coincide with A, and we obtain then

1

§1. Axiom of Continuity 15
Ay = D= 0,
LmP(4,) = P(0) = 0.

All examples of finite fields of probability, in the first chapter,
satisfy, therefore, Axiom VI The system of Axioms I- VI then
‘proves to be consistent and incomplete.

For infinite fields, on the other hand, the Axiom of Continuity,
VI, proved to be independent of Axioms I - V. Since the new axiom
is essential for infinite fields of probability only, it is almost im-
possible to elucidate its empirical meaning, as has been done, for
example, in the case of Axioms I-V in §2 of the first chapter.
For, in describing any observable random process we can obtain
only finite fields of probability. Infinite fields of probability occur
only as idealized models of real random processes. We limit our-
selves, arbitrarily, to only those models which satisfy Aziom V1.
This limitation has been found expedient in researches of the
‘most diverse sort.

GENERALIZED ADDITION THEORSM: If A, A, Land
A belong to §, then from
A= @
follows the equation
PA) = ZP(A). ®)
Proof : Let Rm34n.
S
Then, obviously 2R =0,
and, therefore, according to Axiom VI
lim P(R,) =0 na . (6)

On the other hand, by the addition theorem
P(A) = P(A)) + P(A) + ...+ P(4) +P(R) . (1)
From (6) and (7) we immediately obtain (5).

We have shown, then, that the probability P(A) is a com-
‘pletely additive set function on . Conversely, Axioms V and VI
hold true for every completely additive set function defined on
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any field §.* We can, therefore, define the concept of a field of
probability in the following way: Let E be an arbitrary set, §
field of subsets of E, containing E, and P(A) a non-negative com-
pletely additive set function defined on %; the field  together
with the set function P(A) forms a field of probability.

A COVERING THEOREM : If A, Ay, Ay, ..., Ay, ... belong to §
and

A<g4, ®
then. b
PA) = ZP(4) ©
Proof : "
A= AG(A) = AA + Aldy = Ay A) + Ay — dydy— AsA) oo,

P(4) = PAA) + P{Ady — g )} + - S P(A) +P(A) +

§2. Borel Fields of Probability

The field § is called a Borel field, if all countable sums4a
of the sets 4, from § belong to § Borel felds are also called dom-
Dletely additive systems of sets. From the formula

S= A+ (y — 4, 4) + (dy — Aydy — Asfy) + - m
we can deduce that a Borel field contains also all the sums & 4,
composed of a countable number of sets A, belonging to it. From
the formula

P =E -4, @

the same can be said for the product of sets,

A field of probability is o Borel field of probability if the
corresponding field  is o Borel field. Only in the case of Borel
fields of probability do we obtain full freedom of action, without
danger of the occurrence of events having no probability, We
shall now prove that we may limit ourselves to the investigation
of Borel fields of probability. This will follow from the so-called
extension theorem, to which we shall now turn.

Given a field of probability (3, P). As is known', there exists
a smallest Borel field B containing . And we have the

See, Tor example, O. NixooxM, Sur une généralisation des intégrales de

M. J. Rodow, Fun. Math. v. 15, 1830, p. 136,
*Hauspowrr, Mengenlehre, 1921, p. 85

§2. Borel Fields of Probability n

EXTENSION THEOREM : It is always possible to cxtend a non-
negative completely additive set function P(A), defined in %,
to all sets of B without losing either of its properties (non-
negativeness and complete additivity) and this can be done in
only one way.

The extended field B forms with the extended set func-
tion P(A) & field of probability (B3, P). This field of probability
(B, P) we shall call the Borel eatension of the field (%, P)

The proof of this theorem, which belongs to the theory of
additive set functions and which sometimes appears in other
forms, can be given as follows:

Let A be any subset of E; we shall denote by P* (4) the lower
limit of the sums

P4
for all coverings
Acedy

of the set A by a finite or countable number of sets . of . It is
easy to prove that P*(A) is then an outer measure in the
Carathéodory sense’. In accordance with the Covering Theorem
(§1), P*(A) coincides with P(A) for all sets of . It can be fur-
ther shown that all sets of  are measurable in the Carathéodory
sense. Since all measurable sets form a Borel field, all sets of By
are consequently measurable. The set function P* (4) is, there-
fore, completely additive on B, and on By we may set
P(A) = P*(A).

We have thus shown the existence of the extension. The unique-
ness of this extension follows immediately from the minimal
‘property of the field BY.

Remark: Even if the sets (events) A of & can be interpreted
as actual and (perhaps only approximately) observable events,
it does not, of course, follow from this that the sets of the extended
field BY reasonably admit of such an interpretation.

Thus there is the possibility that while a field of probability
(§, P) may be regarded as the image (idealized, however) of

* Canatibooony, Vorlesungen siber reclle Funktionen, pp25T-258. (New
York, Chelsea Publishing Company)
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actual random events, the extended field of probability (B, P)
will still remain merely a mathematical structure.

Thus sets of BY are generally merely ideal events to which
nothing corresponds in the outside world. However, if reasoning
which utilizes the probabilities of such ideal events leads us to a
determination of the probability of an actual event of , then,
from an empirical point of view also, this determination will
automatically fail to be contradictory.

§3. Examples of Infinite Fields of Probability

1 In §1 of the first chapter, we have constructed various
finite probability field

Let now £ = {&, &, ..., &, .} be a countable set, and let §
coincide with the aggregate of the subsets of E.

Al possible probability fields with such an aggregate ¥ are
obtained in the following manner:

We take a sequence of non-negative numbers p,, such that

=1

R
and for each set A put

P(4) = Zh.

where the summation 3" extends to all the indices n for which
£ belongs to A. These fields of probability are obviously Borel
fields.

1L In this example, we shall assume that £ represents the
real number axis. At first, let § be formed of all possible finite
sums of half-open intervals [a; b) = {em¢<5) (taking into
consideration not only the proper intervals, with finite a and b,
but also the improper intervals [~ co; a), [a; + o) and [-so
+20)). i then a field. By means of the extension theorem, how-
ever, each field of probability on § can be extended to a similar
field on BR. The system of sets B is, therefore, in our case
nothing but the system of all Borel point sets on a line. Let us
turn now to the following case.

TI1. Again suppose E to be the real number axis, while § is
composed of all Borel point sets of this line. In order to construct
a fleld of probability with the given field %, it is sufficient to
define an arbitrary non-negative completely additive set-function

§3. Examples of Infnite Fields of Probability 1

P(4) on § which satisfies the condition P(E) = 1. As is well
known{ such a function is uniquely determined by its values

P} 2) = F(2) &
for the special intervals [~ oo; ). The function F(z) is called the
distribution function of ¢. Further on (Chap. IIL, §2) we shall
shown that F(z) is non-decreasing, continuous on the left, and
has the following limiting values:

limF) = F(—o0) =0, limF() =F(+e) =1.  (2)

Conversely, if a given function F(z) satisfies these conditions,
then it always determines a non-negative completely additive set-
function P(4) for which P(E) = 1¢

IV. Let us now consider the basic set  as an n-dimensional
Euclidian space R, i.e, the set of all ordered n-tuples ¢ = (., z,

-, .} of real numbers. Let § consist, in this case, of all Borel
point-sets® of the space R On the basis of reasoning analogous
to that used in Example IT, we need not investigate narrower sys-
tems of sets, for example the systems of n-dimensional intervals.

The role of probability function P(4) will be played here,
as always, by any non-negative and completely additive set-
function defined on & and satisfying the condition P(E) = 1. Such
a set-function is determined uniquely if we assign its values

Pllae...ed = Flag @y, oo ) ®
for the special sets Ly,e,..u., Where L. ., represents the
aggregate of all ¢ for which z,<a, (i=1,2,...,n).

For our function F (a, @, ..., ,) we may choose any function
which for each variable is non-decreasing and continuous on the
left, and which satisfies the following conditions:

B F(ay, g ) = (@101, =0, iyt )

P i N
lim Flay.ag,. . a) = Flo0, o0, ..., o) =1

Z (T ey = 46—y Gy e ) 20,

e >0, i=1.2.3...m

7CE., for example,Lewsscue, Legons eur Pintégration, 1928, p. 162-156,

*Sea the previous note.

*For a definition of Borel sets in R sce Havsoowrr, Mengenlehre, 1927,
op. 177181,
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F(@, ..., ) is called the distribution function of the vari-
ables , 2, 2

‘The investigation of fields of probability of the above type
s sufficient for all cassical problems in the theory of probability*.
In particular, a probability function in R* can be defined thus:

We take any non-negative point function f(zi, s . . . . 72)
defined in Rr, stch that

I Fofien.

L w)dxdx, o dz

and set
Pl =[[ - [l sdnds . dn . (5)
1z, 25, 1 %,) is, in this case, the probability density at the
point (z,, Zy, ..., 7,) (cf. Chap. I11, § 2)..
Another type of probability function in R* is obtained in the
following manner: Let {} be a sequence of points of R, and

let (A} be a sequence of non-negative real numbers, such that
X p=1; we then set, as we did in Example I,

P4) =Z'p,

where the summation 3 extends over all indices i for which ¢
belongs to A. The two types of probability functions in R+ men-
tioned here do not exhaust all possibilities, but are usually con-
sidered suficient for applications of the theory of probabiity.
Nevertheless, we can imagine problems of interest for applica-
tions outside of this classical region in which elementary events
are defined by means of an infinite number of coordinates. The
corresponding fields of probability we shall study more closely
after introducing several concepts needed for this purpose. (Cf.
Chap. 111, § 3).

£, for example, R. v. Mists
ilities for “all practically possible
required.

. 1519, Here the existence of prot
Sets of an n-dimensional space is

Chapter I

RANDOM VARIABLES

§ 1. Probability Functions

Given a mapping of the set E into a set ' consisting of any
type of elements, i.e. a single-valued function (¢) defined on E,
whose values belong to E. To each subset A of E' we shall put
into correspondence, as its pre.image in E, the set u-(4) of all
elements of F which map onto clements of A", Let §® be the
system of all subsets A’ of E, whose pre-images belong to the
feld . § will then also be a field. If  happens to be a Borel
field, the same will be true of §®). We now set

POA) =P i d)). @
Since this set-function P®), defined on ¥, satisfies with respect
to the field §*) all of our Axioms I-VI, it represents a proba-
bility function on 5. Before turning to the proof of all the facts
just stated, we shall formulate the following definition.

DEFINITION. Given & single-valued function (¢) of a random
event ¢ The function P (4"), defined by (1), is then called the
‘probability function of w.

Remark 1: Tn studying fields of probability (%, P), we call the
function P(4) simply the probsbility function, but P (4') is
called the probability function of u. In the case u (&) = & P (4")
coincides with P(4).

Remark 2: The event u (A") consists of the fact that u(&)
belongs to A", Therefore, P (A") is the probability of 1(§)< A’

We still have to prove the above-mentioned properties of §*
and P They follow, however, from a single fact, namely:

LEMMA. The sum, product, and difference of any pre-mage
sets 1 (A) are the pre-images of the corresponding sums, prod-
uets, and. differences of the original sets A'.

The proof of this lemma is left for the reader.

2
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Let A’ and B' be two sets of §®). Their pre-images A and B
belong then to §. Since & is a feld, the sets AB, A - B, and A~ B.
also belong to §; but these sets are the pre-images of the sets A’B',
A’+ B, and A’ B', which thus belong to §. This proves that
@ isa field. In the same manner it can be shown that if  is
Borel field, so is §.

Furthermore, it is clear that

P& = Plu-i(E)) =P(E) = 1.

‘That P is always non-negative, is self-evident. It remains only
10 be shown, therefore, that P is completely additive (cf. the
end of § 1, Chap. 1.

Let us assume that the sets A, and therefore their pre-images
W (A", are disjoin. It follows that

PS4 = Pl (T4} = P{Zut(40)
= P4 = PO

which proves the complete additivity of P

In conclusion let us also note the following. Let u:(¢) be a
function mapping E on E', and u(¢) be another function, map-
ping E” on E”. The product function usu,(¢) maps E on E”. We
shall now study the probability functions P(4’) and P (4")
for the functions () and u(¢) = tau:(¢). It is easy to show
that these two probability functions are connected by the follow-
ing relation:

(4) = P (7). @

§2. Definition of Random Variables and of
Distribution Functions

DEFINITION. A real single-valued function (), defined on the
basic set , is called a random variable if for each choice of a real
number a the set {x < a} of all ¢ for which the inequality z<a
holds true, belongs to the system of sets §.

‘This function z (¢) maps the basic set E into the set R of all
real numbers. This function determines, as in § 1, a field §( of
subsets of the set k', We may formulate our definition of random
variable in this manner : A real function z (¢) is a random variable
if and only if =) contains every interval of the form (-cof a).

§2. Definition of Random Variables and of Distri

tion Functions 23

Since § is a field, then along with the intervals (-oo; a) it
contains all possible finite sums of half-open intervals [a; b). 1€
our field of probability is a Borel field, then § and §( are Borel
fields; therefore, in this case 5 contains all Borel sets of K.

‘The probability function of a random variable we shall denote
in the future by P) (4"). It is defined for all sets of the field §¢.
In particular, for the most important case, the Borel field of
probability, P is defined for all Borel sets of R'.

DEFINITION. The function

F@ () = P9 (-00,0) =P {s<a),

where oo and + oo are allowable values of a, is called the distri-
bution function of the random variable z.

From the definition it follows at once that

F@ (co0) = 0, F (+0) =1 + [§9)

The probability of the realization of both inequalities a<z <b,
is obviously given by the formula

Pl [o; B} = FO) — Felte) @
From this, we have, for a.<b,
Fi (@) Fo ()

which means that F«)(a) is a non-decreasing function. Now let

Therefore, in accordance with the continuity axiom,
FO) — Fola)) = P2 (4, )
‘approaches 7ero ass-» 4 cc. From this it is clear that F(=) () is
continuous on the left.
Tn an analogous way we can prove the formulae:

lim F®)(a)
Tim Fe (a)

() =0, am-, (3
Fo(be) =1, [

1If the field of probability (%, P) is a Borel field, the values of
the probability function P®)(A) for all Borel sets 4 of R* are
uniquely determined by knowledge of the distribution function
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F®(a) (cf. § 3, IIL in Chap. T1). Since our main interest lies in
these values of Pt (4), the distribution function plays a most
significant role in all our future work.

If the distribution function F)(a) is differentiable, then we
call its derivative with respect to a,

F90) = 4 FOa) ¢
the probability density of z at the point a.

1f also F® (a) = | f®(a) da for each a, then we may ex-

press the probability function P (4) for each Borel set A in
terms of £ (a) in the following manner

PHI(A) = [(e) da. ®
In this case we call the distribution of = continuous. And in the
general case, we write, analogously

PE(d) = [4Fa) . ®

All the concepts just introduced are capable of generalization

for conditional probabilities. The set function

P4 = Pax = 4)
is the conditional probability function of z under hypothesis B.
The non-decreasing function

i@

(e < a)

is the corresponding distribution function, and, finally (in the
case where F§(a) is differentiable)

156 = 5 F¥a)

is the conditional probabil
hypothesis B.

ity density of z at the point @ under

§3. Multi-dimensional Distribution Functions

Let now n random variables z, 2, . . ., 2, be given. The point.
2= (@ . .., 22) of the n-dimensional space R is a function
of the elementary event ¢. Therefore, according to the general
rules in §1, we have a field  gewm-%  consisting of

§3. Multi-dimensional Distribution Functions 5

subsets of space R* and & probability function P -.-.m)(4)
defined on . This probability function is called the n-dimensional
‘probability function of the random vay iables z,, 7, .. ., 7.

As follows directly from the definition of a random variable,
the field § contains, for each choice of i and a, (i=1,2, .., ),
the set of all points in R for which z,< a.. Therefore  also con-
tains the intersection of the above sets, Le. the set L, .,
of all points of R* for which all the inequalities z < a: hold
(=129

1f we now denote as the n-dimensional half-open interval

(@100 Guibu by B)

the set of all points in R, for which S z.< b, then we see at
once that each such interval belongs to the field ' since
(o v tni by b )
=Lt = Lanese = Lnatcccte = = Lipycobaran

The Borel extension of the system of all n-dimensional half-
open intervals consists of all Borel sets in B, From this it follows
that in the case of a Borel field of probabilituythe field & contains
all the Borel sets in the space R*.

THEOREM : In the case of a Borel field of probability each Borel
fiinction s = f (1,73, ... ., ) of a fnite number of random vari-
ables 2., 2, . .., %y is also @ random variable.

All we need to prove this is to point out that the set of all
points (1, 2, ..., 22) in B for which & = (2, ..., 2) <@
is s Borel set. In particular, all finite sums and products of random
variables are also random variables.

DEFINITION : The function

Foute (o ay, .

P (L, )
is called the n-dimensional distribution. function of the random
variables 71, 7, . . ., 2.

As in the one-dimensional case, we prove that the n-dimensional
distribution function ~F¥n®:-+*)(a,, a,,...,a.) is non-decreas-
ing and continuous on the left in each variable. In analogy to
equations (3) and (4) in § 2, we here have

The o may also assume the infinite values &
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The distribution function Fin = gives directly the values
of Pirsi %9 only for the special sets Lug, ..o, 1f our field, how-
ever, is a Borel field, then* Pt s ... %) is uniquely determined for
all Borel sets in R* by knowledge of the distribution function
it
1f there exists the derivative

Flag e 8 = g P (4 g 00

we call this derivative the n-dimensional probability density of
the random variables 2, Tz, - . -, 2 at the point as, Gay. .-, . 1
also for every point (g, @a, - - -, &)

)dayday ... day,

[T RIS i e

then the distribution of 7., s, - . . , 7, is called continuous. For
every Borel set Ac R, we have the equality

[[ ‘j/u.,a,‘ . a)da,day ... da,.  (9)

In closing this section we shall make one more remark about
the relationships between the various probability functions and
distribution functions. L4

Given the substitution

[

and let rydenote the transformation i
B (k=1,2,...,m)
of space R» into itself. It is then obvious that
Pl () = Pttt (A) 10)

Now let 2/ = py(2) be the “projection” of the space Rr on the
space R (k< n), so that the point (z,, &, - ., z.) is mappedonto
the point (2, 2, - - ., ). Then, as a result of Formula (2) in§ 1,

C£. §3, IV in the Second Chapter.

§ 4. Probabilities in Infinite-dimensional Spaces n

Pl () — Pl

(i) an

For the corresponding distribution functions, we obtain from
(10) and (11) the equations:

F T @) = P 0y ray), (12)
it 3y, g ) = PRt a2, 00, oy +00) (18)

§4. Probabilities in Infinite-dimensional Spaces

In §8 of the second chapter we have seen how to construct
various fields of probability common in the theory of probability.
We can imagine, however, intercsting problems in which the
clementary events are defined by means of an infinite number
of coordinates. Let us take a set M of indices » (indexing set) of
arbitrary cardinality m . The totality of all systems

E={n)

of real numbers x, , where « runs through the entire set M, we
shall call the space R¥ (in order to define an element ¢ in space
R¥, we must put each element x in set M in correspondence with
a real number s, or, equivalently, assign a real single-valued
function s, of the element 4, defined on M)”. If the set M consists
of the first n natural numbers 1,2, .., n, then RM is the ordinary
n-dimensional space . If we choose for the set M all real num-
bers R, then the corresponding space R = R¥ will consist of
all real functions

. &)

of the real variable 1.

We now take the set R (with an arbitrary set M) as the
basic set £. Let § = {x,} be an element in & we shall denote by
Peareropal®) the DOINt (s 5y %) of the n-dimensional
space . A subset A of E we shall call a cylinder set if it can
be represented in the form

A= Dl mlA)

where A" is a subset of R». The class of all cylinder sets coincides,
therefore, with the class of all sets which can be defined by rela-
tions of the form.

Gf. HavsDoRr, Mengenlehre, 1921, p. 23.
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&)

In order to determine an arbitrary cylinder set us...m(d’) bY
such a relation, we need only take as f a function which equals 0
on A", but outside of A’ equals unity.

A cylinder set is a Borel cylinder set if the corresponding set
A" is a Borel set. All Borel cylinder scts of the space R¥ form a
field, which we shall henceforth denote by F4*.

The Borel extension of the field 3 we shall denote, as always,
by BF. Sets in By we shall call Borel sets of the space RX.

Later on we shall give a method of constructing and operating
with probability functions on §¥, and consequently, by means of
the Extension Theorem, on B also. We obtain in this manner
fields of probability sufficient for all purposes in the case that the
set M is denumerable. We can therefore handle all questions
touching upon a denumerable sequence of random variables. But
if M is not denumerable, many simple and interesting subsets of
R remain outside of B, For example, the set of all elements ¢
for which %, remains smaller than a fixed constant for all
indices 4, does not belong to the system B if the set M
non-denumerable.

It is therefore desirable to try whenever possible to put each
problem in such a form that the space of all elementary events ¢
has only a denumerable set of coordinates.

Let a probability function P(4) be defined on F*. We may
then regard every coordinate x, of the clomentary event ¢
as a random variable In consequence, every finite group
(S Tp - %) Of these coordinates has an n-dimensional
probability fanction Py, __..(4) and a corresponding distribu-

P

o th aon 1 flls tht Bore cylinder st s Borel et dfnable
B e Rt e e ol e £t e
B Retnt

L
e wecan e the e A + B, AT, and A respectively b th relations
!
rialol
£t o, .
where ol =0 for 0 and o — 1€ { ani g ar Bore fancions
T T b 0t Beretore/ AL A5 and 4D are Bore
e 0 [ AR G oF i

§4. Probabilitiesin Infinite-dis

nal Spaces zv

tion function  F, {0y, as, . .
every Borel cylinder set

a.). 1t is obvious that for

A=)

the following equation holds:
PUA) = P e (4]

where A’ is a Borel set of Rr. In this manner, the probability
function P is uniquely determined on the field § of all cylinder sets
by means of the values of all finite probability functions Ppy...se
for all Borel sets of the corresponding spaces Rr. However, for
Borel sets, the values of the probability functions Pu..., are
uniquely determined by means of the corresponding distribution
functions. We have thus proved the following theorem:

The set of all finite-dimensional distribution functions
Fypp...on uniquely determines the probability function P(A) for
all sets in §4. If P(A) is defined on §¥, then (according to the
extension theorem) it is uniquely determined on BRY by the
values of the distribution functiont Fyp,...m -

We may now ask the following. Under what conditions does a
system of distribution functions F,.y,..... iven a priori define
a feld of probability on ¥ (and, consequently, on BF)?

We must first note that every distribution function F, . .
‘must satisfy the conditions given in §3, I1I of the second chap-
ter; indeed this is contained in the very concept of distribution
function. Besides, as a result of formulas (13) and (14) in §2,
we have also the following relations:

O G 8 = P ). (@)

P (s 8y, s @) = Fpup @1, B o085, 00, +00), (3)

where k<n and (i ¥ 7) is an arbitrary permutation.

These necessary conditions prove also to be sufficient, as will
appear from the following theorem.

'FUNDAMENTAL THEOREM: Every system of distribution func-
Hons Fiys,.. s, satisfying the conditions (2) and. (3), defines
probability function P(A) on ¥, which satisfies Azioms I~ VL.
This probability function P(A) can be extended (by the exten-
sion theorem) to BFH also.
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Proof. Given the distribution functions Fy,,. ...
the general conditions of Chap. I1, § 3, 11T and also conditions (2)
and (3). Every distribution function F,,,,...,, defines uniquely
a corresponding probability function Py, for all Borel sets
of B (cf. §3). We shall deal in the future only with Borel sets
of R and with Borel cylinder sets in E.

For every cylinder set

A g

) s
we set

PUA) = Pry () @
Since the same cylinder set A can be defined by various sets A’,
we must first show that formula (4) yields always the same
value for P(4).

Let (5, %, %,) be a finite system of random variables
#,. Proceeding from the probability function P,,,, ., of these
random variables, we can, in accordance with the rules in § 3,
define the probability function Py u,...w;, of each subsystem
(%ug 3wy - . %) - From equations (2) and (3) it follows that
this probability function defined according to § 3 is the same as
the function Py, ...s, given a priori. We shall now suppose that
the cylinder set A is defined by means of

A= Bl
and simultaneously by means of
A= B a4
where all random variables x,, and z,, belong to the system

(s %uys - ., %,) , which is obviously not an essential restriction.
The eanditions
(s m) 4
and
Gt ) < A
are cquivalent, Therefore

=¥,

Poi ) = P (s T2 ) < A
= Prrn (B By s Ty ) S A} = Py (A7),

which proves our statement concerning the uniqueness of the
definition of P(A).

§ 4. Probabilities in Infinite-dimensional Spaces s

Let us now prove that the field of probability (¥, P) satisfies
all the Axioms - VI. Axiom I requires merely that § be a field.
‘This fact has already been proven above. Moreover, for an arbi-
trary s

PE)

which proves that Axioms IT and IV apply in this case. Finally,
from the definition of P(A) it follows at once that P(4) is non-
negative (Axiom III).
Tt is only slightly more complicated to prove that Axiom V
is also satisfied. In order to doso, we investigate two cylinder sets
)
'"ﬂ B g -

We shall assume that all variables x,, and x,, belong o one inclu-
sive finite system (s,,, %, ., - If the sets A and B do not
intersect, the relations .

(i oo 5 ) < &

(g T - ) B

are incompatible. Therefore

and

PUA 4 B) = Py (3 i+ ) €4
O (g g 2 ) < B}
= Procrel (s e s 2m) 4

+ Prusc (B B - 5 ) S B} = PLA) + P(B),

which concludes our proof.
Only Axiom VI remains. Let
4,544 2 43
be a decreasing sequence of cylinder sets satisfying the condition
limP(d,) =L>0.
We shall prove that the product of all sets A, is not empty. We
‘may assume, without essentially restricting the problem, that in
the definition of the first n cylinder sets A,, only the first n co-
ordinates x,, in the sequence
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occur, 1.

At

palBa)-
For brevity we set
Prapn..a(B) = Pu(B)i

then, obviously

Pu(B)) = P(4) ZL>0.
In each set B, it is possible to find a closed bounded set U, such
that

Pu(B.-UN =

From this inequality we have for the set

the inequality

P(4u-V) ®)

Let, morever,
W,

From (5) it follows that
P(4,-W.) =
Since W, V,cd, , it follows that

ViV

PV =PA) ~e=L—¢
If ¢ is sufficiently small, P(W,) >0 and W, is not empty. We
shall now choose in each set W, a point ¢ with the coordinates
. Every point ), p =0, 1,2, .. . , belongs to the set V.
therefore

(e

n

) = ) € U,
Since the sets U, are bounded we may (by the diagonal method)
choose from the sequence {¢®) a subsequence

g, g, g,

for which the corresponding coordinates % tend for any k to
a definite limit z,. Let, finally, ¢ be a point in set E with the
coordinates

§6. Bquivalent Random Variables; Vasious Kinds of Convergence 33

As the limit of the sequence (x{*, x{"", ..., x{*),i = 1,2,3, ..., the
POInt (24, 7, ., 22) belongs to the set Uy, Therefore, ¢ belongs to

BV b U
for any k and therefore to the product
A= P,

§5. Equivalent Random

‘ariables; Various Kinds of Convergence

Starting with this paragraph, we deal exclusively with Borel
fields of probability. As we have already explained in §2 of the
second chapter, this does not constitute any essential restriction
on our investigations.

Two random variables z and y are called equivalent, if the
probability of the relation z -y is equal to zero. It is obvious that.
two equivalent random variables have the same probability func-
tion:

P (4) = PO (A).

Therefore, the distribution functions F*) and F) are also

identical. In many problems in the theory of probability we may

substitute for any random varisble any equivalent variable.
Now let.

Ctpoonamo0n m
be a sequence of random variables. Let us study the set A of all
elementary events ¢ for which the sequence (1) converges. If we
denote by A% the sets of ¢ for which all the following inequalities
hold

Prus = sl <% k=t2,
then we obtain at once
A=pep4% . @

According to §3, the set A% always belongs to the field §. The
relation (2) shows that A, oo, belongs o §. We may, therefore,
speak of the probability of convergence of a sequence of random
variables,for it akways has a perfectly definite meaning.

Now let the probability P(4) of the convergence set A be
equal to unity. We may then state that the sequence (1) con-
verges with the probability one to & random variable z, where
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the random variable z is uniquely defined except for equivalence.
To determine such a random variable we set

z=limz, ne oo

on 4, and z = 0 outside of A. We have to show that z is a random
variable, in other words, that the set A (a) of the clements ¢ for
which z < a, belongs to §. But

4@ = 48D {xn,, <a}
in case a < 0,and

4@ = 4§Dy <a) + 4

in the opposite case, from which our statement follows at once.

1f the probability of convergence of the sequence (1) to =
equals one, then we say that the sequence (1) converges almost
surely to z. However, for the theory of probability, another con-
ception of convergence is possibly more important.

DEFINITION. The sequence 2., ., . . ., Z - - - of random vari-
ables converges in probability (converge en probabilité) to the
random variable z, if for any ¢ >0, the probability

Plisa— x> ¢}

tends toward zero as n—rco®.

L. If the sequence (1) converges in probability to z and also
to o', then z and =’ are equivalent. In fact

Pl — 21> = pfim — s> o+ pfln— 21> ks

since the last probabilities are as small as we please for a suffici-
ently large n it follows that

Pl i>

and we obtain at once that
Petxys Sl —xi>

T0 If the sequence (1) almost surely converges to z, then it

“Thix concept is due to Beenouliy it compltaly general tretment was
introduced by E. E. Slutsky (see (1] pietely &

§6. Equivalent Random Variables; Various Kinds of Convergonce 35

also converges to x in probability. Let A be the convergence set
of the sequence (1) ; then

1 =P(A) STmP x| <e.p =

102,y F P =3 <4

from which the convergence in probability follows.
1IL For the convergence in probability of the sequence (1)
the following condition is both necessary and suffcient: For any
&> 0 there ezists an n. such that, for every p > 0, the following
inequality holds:
Plitnay — 5l > <.

Let Fy(a), Fi(a), ..., Fula), ..., F(a) be the distribution
functions of the random variables x,, s, . . ., Zw - - . , 2. If the
‘sequence z, converges in probability to z, the distribution func-
tion F(a) is uniquely determined by knowledge of the functions
F.(a). We have, in fact,

'THEOREM : If the sequence T, s, . . . , Zw - - - CONVETgEs in
probability to z, the corresponding sequence of distribution func-
tions F.(a) converges at each point of continuity of F(a) to the
distribution function F (a) of z.

That F(a) is really determined by the F,(a) follows from the
fact that F (a), being a monotone function, continuous on the left,
is uniquely determined by its values at the points of continuity*. To
prove the theorem we assume that F' is continuous at the point
a. Let @’ < a; then in case z < @/, z, = a it is necessary that
| %u-2 | > a-a’. Therefore

TP <d, r2a) =0,
Fld)=P (e <) 5Py <a) +Ple<a’, 7 ma) = Fola) + Ps<d, 5a20),
F(a) & liminfF,(a) + limP(r<a’, x,z4),

F(@) < limintFy (o). ®)
In an analogous manner, we can prove that from a” > a there
follows the relation

Fa")

im sup Fu(a) . @

©In fact it has st most only a countable set of discontinuities (see Lempsous,
Legona sur Fintigration, 1635, . 50. Therefore, the points of continuity are
erywhere dense, and ihe value of the Tunction F'(3) at & goint of discon-
Simafty Is determined as the limit of fta values at the points of continuity
on its Teft.
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Since F () and F(a”) converge to F(a) for o = o and a” — a,
it follows from (3) and (4) that

lim Fy(a) = F(a),

ich proves our theorem.

Chapter IV

MATHEMATICAL EXPECTATIONS'

§1. Abstract Lebesgue Integrals
Let  be a random variable and A a set of . Let us form, for a
‘positive A, the sum

Si= S EAPRL S v < ()L Ec 4} It

If this series converges absolutely for every A, then as = 0,
tends toward a definite limit, which is by definition the integral

[apr) . @

In this abstract form the concept of an integral was introduced
by Fréchet; it is indispensable for the theory of probability.
(The reader will see in the following paragraphs that the usual
definition for the conditional mathematical expectation of the
variable z under hypothesis A coincides with the definition of
the integral (2) except for a constant factor)

We shall give here a brief survey of the most important
properties of the integrals of form (2). The reader will find their
Proofs in every textbook on real variables, although the proofs
are usually carried out only in the case where P () is the Lebesgue
‘measure of sets in R”. The extension of these proofs to the general
case does not entail any new mathematical problem; for the most
part they remain word for word the same.

I 1 a random variable z is integrable on A, then it is in-
tegrable on each subset A’ of A belonging to .

IL If z is integrable on A and A is decomposed into no

D fate in § 5 of th third o
as i the following chapters, Bore fl

" Fagomr, Sur Pintdgrale dune functionnelle dtendue & un onsemble
abtrit, Bull. Soc. Math. France v. 45, 1916, p. 248,

B
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more than a countable number of non-intersecting sets A, of ¥,
then
[epun) = 3 fxpur)
IIL If z is integrable,| z | is also integrable, and in that case

[rPun]<fispun.

IV. If in each event ¢, the inequalities 0 < y = z hold, then
along with z, y is also integrable’, and in that case

[yPuan -_,‘[xp(m

V. If m =< 2 = M where m and M are two constants, then
Pt4) < [£P(eE) < ML)

VI If z and y are integrable, and K and L are two real con-
stants,then Kz + Ly is also integrable, and in this case

[(Kx+ Ly) PUE) = K [xPWE) + L[yP(aE).
VIL If the series
PN
converges, then the series
Zn-z

converges at each point of set A with the exception of a certain
set B for which P(B) = 0. If we set z = 0 everywhere except on

A - B, then
[xPaE) = 3 [nPEB)
VIIL If z and y are equivalent (P{x %y} = 0), then for

every set A of
jxmm cjymfy. (3)

"1t in assumed that  is & random variable, e, in the terminalogy of the
general theory of integration, measurable with rebpect o § - 0

§2. Absclute and Conditionsl Mathematical Expectations 30

IX. If (3) holds for every set 4 of , then z and y are
equivalent.

From the foregoing definition of an integral we also obtain
the following property, which is not found in the usual Lebesgue
theory.

X. Let P,(A) and P,(4) be two probability functions defined
onthe same field §, P(4) = P,(A) + P.(4), andlet = be integrable
on A relative to P,(4) and P, (4). Then

[xPuaE) SJXWE, + [xPyaB).
XI. Every bounded random variable is integrable.

§ 2. Absolute and Conditional Mathematical Expectations
Let 2 be a random variable. The integral
E) = [2P(dE)
is called in the theory of probability the mathematical expectation

of the variable z. From the properties I11, 1V, V, VI, VII, VIII,
XI, it follows that

L |E2)| S E(2));

IL E(y) S E(2) if 0= y =z everywhere;

L inf (x) = E() Ssup (1)

IV. E(Kz + Ly) = KE(z) + LE@)

V. E(Zn)= TEw). i theseries JE(n) converges;

VI If z and y are equivalent then
E(@) =E@).

VIL Every bounded random variable has a mathematical
expectation.

From the definition of the integral, we have

£

WS Tl < 0 )

= W E (k4 1)) — Flbm)
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The second line is nothing more than the usual definition of the
Stieltjes integral

Jearow = €. )
Formula (1) may therefore serve as a definition of the mathe-
matical expectation E(x).

Now let u be a function of the elementary event ¢ and x be a
random variable defined as a single-valued function z = z(u)
of u. Then

Plhm =5 < (k+ 1) m) = POLbm = 20 < (£ + )m),

where P®)(A) is the probability function of w. It then follows
from the definition of the integral that

[+pan) = [xpoue
and, therefore,

€

- [rtapoEn @

where E‘ denotes the set of all possible values of u.

In particular, when u itself is a random variable we have

() = [xPE) = [() POWR) =[x@dF(e). (3)
‘When z(u) is continuous, the last integral in (3) is the ordinary
Stieltjes integral, We must note, however, that the integral
[r@aro @
can exist even when the mathematical expectation E(z) does not.
For the existence of E(z), it is necessary and sufficient that the
integral -
[ixt@1aro @

be finitet. -

If wis a point (s, s, . - -, %) of the space R then as a result
of (2):

“GE V._Guavowxo, Sur les valeurs probables do fonctions, Rend. Accad
Lincei v. 8, 1928, pp. 480483,

§2. Absolute and Conditional Mathematical Expectations 41

Ew =/ ;‘[.(..,,.,,,

We have already seen that the conditional probability Py(A)
possesses all the properties of a probability function. The corres-
ponding integral

) Pt @R (4)

Ep(x) = [xP.HE) (5)

we call the conditional mathematical expectation of the random
wariable z with respect to the event B. Since

[xPatar) =

H
we obtain from (5) the equation

Eule) = [5Pal4B) = [xP2(dB) + [+Pa(aE)

Pl

We recall that in case A B,

Pola) = S0 - D),

we thus obtain
Eale) = iz [*PUE), ®
[£PUE) = PB)Ey(3). )

From (6) and the equality

[xPUE) = [xP(E) + [xP(E)

we obtain at last
) = PAIE) 4 PDIES 0
Eronle) = A ®
and, in particular, we have the formula
E(x) = P(4) Ea(x) + P(4) Eilx) . )
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§3. The Tehebycheff Inequality

Let f(2) be a non-negative function of a real argument z,
which for 2 = a never becomes smaller than b > 0. Then for any
random variable z

Plza s S0, [t}
provided the mathematical expectation E{j(x)} exists. For,
(o) = [1() PUE) = [() PWE) = bP (s ),
i =5

from which (1) follows at onc
For example, for every positive ¢ ,

@)

Now let f(z) be non-negative, even, and, for positive z, non-
decreasing. Then for every random variable z and for any choice
of the constant a > 0 the following inequality holds

P(s] =0 = B0 @)
In particular,
vqx»swgqs%‘-‘ﬂ’ @

Especially important is the case (z)
(3) and (4)

*. We then obtain from

Plx = o) =550, )

Plx— B 2 ) < B E

(6)
‘where
o) = Efs — E@IF
is called the variance of the variable x. It is easy to calculate that
o) = E(e) — (EG
If f() is bounded:
[fx) | =K,
then a lower bound for P(|z| = a) can be found. For

§4. Some Criteria for Convergence “

E(f) = (1) P(aE) = /‘ux) PE) + [1(:) PE)
[ Grf<o asfze
=/@P(x| < a) + KP(lx| =) = /(a) + KP(x| 2 a)
and therefore
Pl 3 ) 2 EL) = 1) ™
If instead of f(z) the random variable z itself is bounded,
I=1=M,
then f(x) = f(M), and instead of (7), we have the formula
o) = o) ~ /o)
Plxl = ) = S0 ®

In the case /(x) = 2, we have from (8)

Plx] = o) 2 BEI - ©®)

§4. Some Criteria for Convergence

Let

Erehoanon [§4)

be & sequence of random variables and f(z) be a non-negative,
even, and for positive z a monotonically increasing function’.
Then the following theorems are true:

1. In order that the sequence (1) converge in probability the
following condition is sufficient: For each ¢ > 0 there exists an n
such that for every p > 0, the following inequality holds:

E ftrnry — s} < . @
I In order that the sequence (1) converge in probability to
the random variable z,the following condition is sufficient:

im E{/tx, — 0} = 0. @)
1L If f(2) is bounded and continuous and £(0) = 0, then
conditions T and I1 are also necessary.

IV. 1f f(x) is continuous, /(0) = 0,and the totality of all
@ @+ ) Ty, 2 is bounded,then conditions I and I are also
necessary.

“Therefore f(x) > 0 if = 0.
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From IT and IV, we obtain in particular

V. In order that sequence (1) converge in probability to z,
it is sufficient that

Tim (s, -2)* =0 - @)

1f also the totality of all z,, z,,. 2 is bounded, then the
condition is also necessary.

For proofs of 1-1V see Slutsky [1] and Fréchet [1]. How-
ever, these theorems follow almost immediately from formulas
(3) and (8) of the preceding section.

§5. Differentiation and Integration of Mathematical Expectations
with Respeet to a Parameter

Let us put each elementary event ¢ into correspondence with a
definite real function z() of a real variable t. We say that z(t)
is a random funetion. if for every fixed t, the variable z(t) is a
random variable. The question now arises, under what conditions
can the mathematical expectation sign be interchanged with the
integration and differentiation signs. The two following theorems,
though they do ot exhaust the problem, can nevertheless give a
satisfactory answer to this question in many simple cases.

THEOREM 1: If the mathematical ezpectation E[z(t)] is finite
for any t, and z(t) is always differentiable for any t, while the
derivative z'(£) of z(t) with respect to ¢ is always less in abso-
lute value than some constant M, then

HEG) - ().

THEOREM II: If (%) always remains less, in absolute value,
than some constant K and is integrable in the Riemann sense, then

fewwa~ e[ Jro4]-

‘provided E[z(t)] is integrable in the Riemann sense.
Proof of Theorem . Let us first note that z'(£) as the limit of
the random variables
An sy,

is also a random variable. Since 2'(#) is bounded, the mathe-

§5. Differentiation and Integration of Mathematical Expectations 45

‘matical expectation E[«'(t)] exists (Property VII of mathe-
‘matical expectation, in §2).  Let us choose fixed ¢ and denote
by A the event.

R |5

The probability P(4) tends to zero as h — 0 for every & > 0. Since

=M, |sOi=M

holds everywhere, and moreover in the case A
swen s,
[esn=re )<,
then
|Exl 4R ~Ex@)
(e

=PAE|IER =IO | 4 pie; | Htb s

exg|=e

St =50
B sl

- <)
campud) +e.

‘We may choose the « > 0 arbitrarily, and P(A) is arbitrarily
small for any sufficiently small h. Therefore

a i EXUE )
FEx0 = lim! 23

(0.

which was to be proved.
Proof of Theorem I1. Let

T
<7

s,

Since S, converges to J = | z(t) dt, we can choose for any
€>0an N such that from n. N there follows the inequality
P = PISi— T > <e.

If we set

Sievws i -2,

then

ISt —E()| = |E(S. = NI =E[Sa—T|
=PA)ES, — J| + PAVELIS, - Ji = 2KP(A) + £ = (2K + 1)e.
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Therefore, S} converges to E(J), from which results the equation
feswar=tms: ~ €.

Theorem II can easily be generalized for double and triple
and higher order multiple integrals. We shall give an application
of this theorem to one example in geometric probability. Let G be a
‘measurable region of the plane whose shape depends on chance;
in other words, let us assign to every clementary event ¢ of a field
of probability a definite measurable plane region G. We shall
denote by J the area of the region G, and by P(z, y) the prob-
ability that the point (z, y) belongs to the region G. Then

EU) = [[Plx, ) dxdy
To prove this it is suficient to note that
I=[[t=azdy,
Pl.) = Ef(x,3) ,
where f(z,9) is the characteristic function of the region G
(f(z,9) = 10on G and f(z,y) = 0 outside of G)*.

 Kosogosoy_and M. LioNTovics, Zur Berechnung der mittleren
‘Brownscen Flache, Physik. Zeitschr. d. Sovietunion, v. 4, 1433,

Chapter V

CONDITIONAL PROBABILITIES AND
MATHEMATICAL EXPECTATIONS

§1. Conditional Probabilities

In§ 6, Chapter I, we defined the conditional probability, Pu(5),
of the event B with respect to trial . It was there assumed that %
allows of only a finite number of different possible results. We
can, however, define Py (B) also for the case of an ¥ with an infinite
set of possible results,i.e. the case in which the set E is partitioned
into an infinite number of non-intersecting subsets. In particular,
we obtain such a partitioning if we consider an arbitrary function
of ¢ and define s elements of the partition %, the sets u = con-
stant. The conditional probability Py, () we also denote by Pu().
Any partitioning % of the set &/ can be defined as the partitioning
9, which is “induced” by a function u of &, if one assigns to every ¢,
25 1(6), that set of the partitioning % of £ which contains ¢.

Two functions u and u of ¢ determine the same partitioning
91, = W of the set E. if and only if there exists a one-to-one cor-
respondence ' = /() between their domains § and F* such
that v (¢) is identical with fu(¢). The reader can easily show that
the random variables P. (B) and P.(B), defined below, are in this
case the same. They are thus determined, in fact, by the partition
o, = Uyitself.

To define P, (B) we may use the following equation:

Piuc)(B) = EenPu(B). [¢V)
Tt is easy to prove that if the set ) of all possible values of u is
finite, equation (1) holds true for any choice of A (when P,(B)
is defined as in § 6, Chap. I). In the general case (in which P, (B)
is not yet defined) we shall prove that there always exists one
and only one random variable P,(B) (except for the matter of
equivalence) which is defined as a function of u and which sat
fies equation (1) for every choice of A from §® such that

@
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P(4) > 0. The function Py(B) of  thus determined to within
equivalence, we call the conditional probability of B with respect
tou (or, for a given ). The value of P, (B) when u = a we shall
designate by P.(a; B).

The proof of the eistence and uniqueness of P, (B). If we
multiply (1) by P{vc 4} = P® (4), we obtain, on the left,
P{uC A}PuculB) = P(B{uc 4) = P(Bu-1(d))

and, on the right,
P{u < 4 B Pu(B) = [Pu(B) PUE) :','p, (B) PO@EW),
winy K
leading to the formula

P(B () = [PL(B) PO dE" @

and conversely (1) follows from (2). In the case P& (4) = 0,
in which case (1) is meaningless, equation (2) becomes trivially
true. Condition (2) is thus equivalent to (1). In accordance with
Property IX of the integral (§ 1, Chap. IV) the random variable
 is uniquely defined (except for equivalence) by means of the
values of the integral

[xPac®)

for all sets of §. Since P,(B) is a random variable determined
on the probability field (§), Pw), it follows that formula (2)
uniquely determines this variable P,(B) except for equivalence.

We must still prove the existence of P,(B). We shall apply
here the following theorem of Nikodym':

Let § be a Borel field, P(4) a non-negative completely additive
set function defined on § (in the terminology of the probability
theory, a random variable on (%, P)), and let Q(4) be another
completely additive set function defined on %, such that from
Q(A)+0 follows the inequality P(4) > 0. Then there exists a
function f(¢) (in the terminology of the theory of probability,
a random variable) which is measurable with respect to §, and
which satisfies, for each set A of , the equation

0. Nixovse, Sur une gindralisation des intégrales
Math. v. 16, 1930 p. 168 (Theorem 111).

e M. J. Ra.don, Fund.

§1. Conditional Probabilities o

Q) = [1() P (dE)

In order to apply this theorem to our case, we need to prove
1° that
Q(A) = P(Bu~(4))
is a completely additive function on ), 2° that from Q(4) +0
follows the inequality P®)(4) > 0.
Firstly, 2° follows from

05 P(Bu-(4) = Plu-t(A) = POLA)
For the proof of 1° we set
A= 34,
WA = Zu 4

Busi(d) = TBu-t(4)

then

and

Since P is completely additive, it follows that
PBu-i(4) = ZP(Bu-l(4) ,
which was to be proved.
From the equation (1) follows an important formula (if we
set A= E®):
P(B) = EPuB) @
Now we shall prove the following two fundamental properties
of conditional probability.
THEOREM L. It is amost sure that
0=P(B) =1 @)
Tusorew 1L If B is decomposed into at most a countable
mumber of sets Bu :

B= 3B ,
then the following equality holds almost surely:
Pu(B) = ZPu(BY - ®

‘These two properties of P,(B) correspond to the two char-
acteristic properties of the probability function P(B): that
05 P(B) = 1always, and that P(B) is completely additive. These
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allow us to carry over many other basic properties of the absolute
probability P(B) to the conditional probability P, (B). However,
we must not forget that P,(B) is,for a fixed set B, a random vari.
able determined uniquely only to within equivalence.

Proof of Theorem I. If we assume—contrary to the assertion
to be proved—that on a set M < E with P (M) > 0, the in-
equality P.(B) =1+, > 0, holds true, then according to for-
mula (1)

Plaesn(B) = Eqen PulB) =1 + ¢,

which is obviously impossible. In the same way we prove that

almost surely P, (B) = 0.

Proof of Theorem II. From the convergence of the series
ZEIPB] = SE(PuB) = ZP(B) = P(B)

it follows from Property V of mathematical expectation (Chap.
1V, §2) that the series
ZPu(B)

almost surely converges. Since the series
e nlPuB] = 3 Ee PulBn) = 3 Pruc (B = Pucy(B)

converges for every choice of the set A such that P (4) > 0,
then from Property V of mathematical expectation just referred
toit follows that for each A of the above kind we have the relation

Eueny (;P.(B.)] T EenyPulBa)) = Pauc.(B) = Etuen (PulBaly

and from this, equation (5) immediately follows.

To close this section we shall point out two particular cases.
If, first, u(¢) =c (a constant), then P.(4) = P(A) almost
surely. If, however, we set u(¢) =¢, thenwe obtain at once
that Py(4) is almost surely equal to one on A and is almost surely
equal to zero on A. Py(4) is thus revealed to be the characteristic
function of set A.

§2. Explanation of a Borel Paradox

Let us choose for our basic set & the set of all points on a
spherical surface. Our  will be the aggregate of all Borel sets
of the spherical surface. And finally, our P(A) is to be propor-
tional to the measure of set A. Let us now choose two diametrically

§3. Conditional Probabilities with Respect to  Random Var

o 51

opposite points for our poles, so that each meridian circle will be
uniquely defined by the longitude ¥, 0=y < . Since y varies
£rom 0 only fo, — in other words, we are considering complete
‘meridian circles (and not merely semicircles) — the latitude &
must vary from —x to -+ (and not from —3 to ++3). Borel set
the following problem: Required to determine “the conditional
probability distribution” of latitude 6, —z=0< 4w for a
given longitudey,
It s easy to caleulate that

{6, = 0 <6y gﬁ'me\ze .

The probability distribution of 6 for a given ¥ is not uniform. i
If we assume that the conditional probability distribution of

© “with the hypothesis that ¢ lies on the given meridian circle”

must be uniform, then we have arrived at a contradiction.

This shows that the concept of a conditional probability with {
regard to an isolated given hypothesis whose probability equals 0
is inadmissible. For we can obtain a probability distribution
for © on the meridian circle only if we regard this circle as an
element of the decomposition of the entire spherical surface into
meridian circles with the given poles.

§3. Conditional Probal

with Respeet 1o a Random Variable

If z is a random variable and P.(B) as a function of z is
‘measurable in the Borel sense, then P.(B) can be defined in an
elementary way. For we can rewrite formula (2) in § 1, to look
as follows:

P(B)PE (4) = [Pu(B) POE) [68)
In this case we obtain from (1) at once that
PIB)FF (@) = [Pula; B)dF®(a) . @)

In accordance with a theorem of Lebesgue® it follows from (2)
that

e+ =
PulaiB) = P It =S 4l @

which is always true except for a set H of points o for W}
P (H) = 0.
Lebesgue, L c., 1928, pp. 301-302.
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P.(a; B) was defined in §1 except on a set G, which is
such that P)(G) = 0. If we now regard formula (3) as the defi-
nition of P, (a; B) (setting P.(a; B) = 0 when the limit in the
right hand side of (3) fails to exist), then this new variable
satisfies all requirements of § 1.

If, besides, the probability densities f)(a) and f§ (a) exist
and if f)(a) > 0, then formula (3) becomes
Pulas B) = P(B) @)
Moreover, from formula (3) it follows that the existence of a
limit in (3) and of a probability density f)(a) results in the
existence of /{ (a). In that case

P(B)f7(0) = /(@) . ®
If P(B) > 0, then from (4) we have

In case 1 (a) = 0, then according to (5) /13 (a) = 0 and there-
fore (6) also holds. If, besides, the distribution of z is contjnuous,
we have

P(B) = E(Pu(B) = /;,1.,5; dF®(a)

Pu(a; B) (e da. (T)

From (6) and (7) we obtain
o) = EBlE ®
IR e e

This equation gives us the so-called Bayes Theorem for continu-
ous distributions. The assumptions under which this theorem is
proved are these: P, (B) is measurable in the Borel sense and at
the point a is defined by formula (3), the distribution of z is con-
tinuous, and at the point a there exists a probability density
1.

§4. Conditional Mathematical Expectations

Let u be an arbitrary function of ¢, and y a random variable.
The random variable E. (y), representable as a function of u and
satisfying, for any set A of §® with P®)(4) > 0, the condition

§4. Conditional Mathematicul Expectations £l

Euwenl) =Euen ) , [¢)]

is called (if it exists) the conditional mathematical ezpectation of
the variable y for known value of u.
If we multiply (1) by P (4), we obtain

YPWE) = [E,() POWEY) . @
wo 4

Conversely from (2) follows formula (1). In case P (4) =0,
in which case (1) is meaningless, (2) becomes trivial. In the
same manner as in the case of conditional probability (§1) we
can prove that E.(y) is determined uniquely—except for equiva-
lence—by (2).

‘The value of E.(y) for u = a we shall denote by E.(a; y). Let
us also note that E,(y), as well as P,(y), depends only upon the
partition ¥, and may be designated by Eq, (3).

‘The existence of E(y) is implied in the definition of E.(y) (if
we set A = EW, then Eqe(y) = E(1)).

We shall now prove that the ezistence of E(y) is also sufficient
for the existence of E.(y). For this we only need to prove that by
the theorem of Nikodym (§ 1), the set function
o) = [ypwr)

wia

is completely additive on % and absolutely continuous with
respect to P (A4). The first property is proved verbatim as in
the case of conditional probability (§1). The second property—
absolute continuity—is contained in the fact that from Q(4)+0
the inequality P*)(A) >0 must follow. If we assume that
P (4) =P {uc 4) = 0,it is clear that
Q) =[yP@E) =0,
win

and our second requirement is thus fulflled.
1f in equation (1) we set A = E®), we obtain the formula

E(@) =EE®) . ®)
We can show further that almost surely
Eu(ay + bz) = aBu(y) + BEL(2) + @

where a and b are two arbitrary constants. (The proof is left to
the reader.)
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If u and v are two functions of the clementary event ¢, then
the couple (1, v) can always be regarded as a function of £ The
following important equation then holds:

) = E0). )
ForE,(y) is defined by the relation

Euenl) = Eqen ) .
Therefore we must show that E,E.. (y) satisfies the equation

Eue00) = Euen EuEunnly) . 6)
From the definition of Eq, (3) it follows that
Eucn0) = EuenyBan ) m
From the definition of E.E, (4) it follows, moreover, that
Etwe ) B ) = ey EuEun3) - ®

Equation (6) results from equations (7) and (8) and thus proves
our statement.

1f we set y = P, (B) equal to one on B and to zero outside of B,
then Eu) =Pu(B),
i) = Prun(B).
In this case,from formula (5) we obtain the formula
EuPyy(B) =P, (B) ©
‘The conditional mathematical expectation E,(y) may also be

defined directly by means of the corresponding conditional prob-
abilities. To do this we consider the following sums:

Su) SR (10)

o
If E(y) exists, the series (10) almost certainly* converges. For
we have from formula (3), of §1,

E|R] = [RAIP (ki = y < (k+ 1)1},
and the convergence of the series

SIkIP(RI=y < (k+ 1)1} = YE|R)

.
SRRy <+l =

almost cortainly interchangeably with almost eurely.

§4. Conditional Mathematical Expectations 5

is the necessary condition for the existence of E(y) (see Chap. IV,
§1). From this convergence it follows that the series (10) con-
verges almost certainly (see Chap. IV, §2, V). We can further
show, exactly as in the theory of the Lebesgue integral, that from
the convergence of (10) for some ), its convergence for every A
follows, and that in the case where series (10) converges, , (1)
tends to a definite limit as A — 0%, We can then define

E() = limS;(w) . an

To prove that the conditional expectation E, (y) defined by rela-
tion (11) satisfies the requirements set forth above, we need only
convince ourselves that E,(y), as determined by (11), satisfies
equation (1). We prove this fact thus:

EenBul) = ImEque  5106)

= tim ShPcn (kS y <O 1) = )
The interchange of the mathematical expectation sign with the
limit sign is admissible in this computation, since S, (u) con-
verges uniformly to E,(y) as A — 0 (a simple result of Property V
of mathematical expectation in §2). The interchange of the
mathematical expectation sign and the summation sign is also
admissble sincs the sories

SEunlnki Sy < (40

(1] Prc (bt 5 3 < (6 + 1)

converges (an immediate result of Property V of mathematical
expectation) .
Tnstead of (11) we may write

Ed0) = [yPu@E). (2)

‘We must not forget here, however, that (12) is not an integral

*In this case we consider only a countable sequence of valuss of 1 then
sl provilis BTy Y3 are o crtainty dened forat
Thede valueso
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in the sense of §1, Chap. IV, so that (12) is only & symbolic
expression.
1f 2 is a random variable then we call the function of z and a

FP@ =iy <a)
the conditional distribution function of y for known .

F,(a) is almost certainly defined for every a. If a < b then
almost certainly

PP =FE@)
From (11) and (10) it follows* that almost certainly
g
Eil) = lim | 3 RUFY(k+ ) — FY(:A) . as)

This fact can be expressed symbolically by the formula

E.0) = [adF¥(@) a4

By means of the new definition of mathematical expectation [(10)
and (11)]it is easy to prove that, for a real function of u,

Elf ()] = ) . 15)

“GE. footnote 5.

Chapter VI

INDEPENDENCE; THE LAW OF LARGE NUMBERS

§1. Independence

DEFINITION 1: Two functions, u and v of ¢, are mutually inde-
‘pendent if for any two sets, A of §), and B of §, the follow-
ing equation holds:

Pluc A, veB) =Puc A)PhcB)

PO POB). (1)
If the sets E) and E® consist of only a finite number of elements,

B =ty 4 o s
E® =0 o+ 4 va

then our definition of independence of u and v is identical with
the definition of independence of the partitions

E ;(uuu.},

(o = o)

asin §5, Chap. I.

For the independence of u and v, the following condition is
necessary and sufficient. For any choice of set A in §* the
following equation holds almost certainly:

Py(ucA) =Pluc A), @

In the case P (B) = 0,both cquations (1) and (2) are satisfied,
and therefore we need only prove their equivalence in the case
P (B) > 0. In this case (1) is equivalent to the relation

Plemc 4) = Pluc 4) @)
and therefore to the relation
EpenPyucd) =Plucd). @

On the other hand, it is obvious that equation (4) follows from

L
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(2). Conversely since P,(uc4) is uniquely determined by (4)
to within probability zero, then equation (2) follows from (4)
almost certainly.

DEFINITION 2: Let M be a set of functions w, (¢) of ¢ These
functions are called mutually independent in their totality if the
following condition is satisfied. Let M’ and M” be two non-
intersecting subsets of M, and let A’ (or A”) be a set from §
defined by a relation among «, from M’ (or M”) ; then we have

PAA) = P(A)P(A).

‘The aggregate of all', of M’ (or of M") can be regarded as
coordinates of some function ' (or 4”). Definition 2 requires
only the independence of w and u” in the sense of Definition 1 for
each choice of non-intersecting sets M’ and M”.

If y t, ..., Uy are mutually independent, then in all cases

Pl S Ay, 16 Ay, e A}
e Adbme s Pk, |

(5)

provided the sets A, belong to the corresponding 5 (proved
by induction). This equation is not in general, however, at all
sufficient for the mutual independence of . s, . . ., ta.

Equation (5) is easily generalized for the case of a countably
infinite product.

From the mutual independence of ,, in each finite group
(s ¥y - ) it does mot mecessarily follow that all w, are
mutually independent.

Finally, it s easy to note that the mutual independence of the
functions , is in reality a property of the corresponding parti-
tions %, Further,if w, are single-valued functions of the cor-
responding «,, then from the mutual independence of , follows
that of .

§2. Independent Random Variables

If 2, 7,, . . ., , are mutually independent random variables
then from equation (2) of the foregoing paragraph follows, in
particular, the formula

Bt oy gy, .., @) = P (a) Fo(ay) . F®9(a). (1)
If in this case the field .+ consists only of Borel sets of

§2. Independent Random Variables 5

the space R, then condition (1) is also suffcient for the mutual
independence of the variables z,, ., ..., zu.

Proof. Let = (5, %,... .. %) and ¥'= (5, %,....,5,) be
two nom-intersecting subsystems of the variables zu, ., - . -, Z1.
We must show, on the basis of formula (1), that for every two
Borel sets A" and A” of ¥ (or =) the following equation holds:

Prcd, v ed)

P e AP 4. @
This follows at once from (1) for the sets of the form

£ (< oy <y H <),

A=y < by 2 < by 2 < b}
1t can be shown that this property of the sets A’ and A” is pre-
served under formation of sums and differences, from which
equation (2) follows for all Borel sets.

Now let z = {x,) be an arbitrary (in general infinite) aggre-
gate of random variables. If the field §) coincides with the field
B (M is the set of all ), the aggregate of equations

Fpeon (@ 83, - Fo(a) Fufa) .. Fu(ad)  (3)
is mecessary and sufficient for the mutual independence of the
variables x, .

‘The necessity of this condition follows at once from formula
(1). We shall now prove that it is also sufficient. Let M’ and M”
be two non-intersecting subsets of the set M of all indices , and
let A’ (or A”) be a set of BF¥ defined by a relation among the %,
with indices s from M’ (or M"). We must show that we then have

PA'A) = P(AIP(4) . @

If A" and A” are cylinder sets then we are dealing with rela-
tions among a finite set of variables x,, equation (4) represents
in that case a simple consequence of previous results (Formula
(2)). And since relation (4) holds for sums and differences of
sets A’ (or A”) also, we have proved (4) for all sets of B
as well.

Now for every u of a set M let there be given a priori a distri
bution function F, (a); in that case we can construct o field of
probability such that certain random varicbles %, in that field
(1 assuming all values in M) will be mutually independent, where
5. will have for its distribution function the F. (@) given a priori.




[image: image34.png]0 VI Independence; The Law of Large Numbers

In order to show this it is enough to take R¥ for the basic set £
and By for the field § and to define the distribution functions
Fupe-.vs(sco Chap. 111, §4) by equation (3).

Let us also note that from the mutual independence of each
finite group of variables , (equation (3)) there follows, as we
have seen above, the mutual independence of all  on BF¥. In
more inclusive fields of probability this property may be lost.

o conclude this section, we shall give a few more criteria for
the independence of two random variables.

If two random variables z and y are mutually independent
and if E(z) and E(y) are fnite then almost certainly

Eb) =Eb),
B0 =E@.

®)

These formulas represent an immediate consequence of the
second definition of conditional mathematical expectation (For-
mulas (10) and (1) of Chap. V, §4). Therefore, in the case of
independence both

jp— ELED) —E01"_AED) gng gr _ ELED-BWF _ ol 01
b o ey O E e

are equal to zero (provided o*(z) > 0 and #*(y) > 0). The num-
ber f? is called the correlation ratio of y with respect to z, and g
the same for z with respect to y (Pearson).
From (5) it further follows that

E(zy) = E(z) E() - ®)
To prove this we apply Formula (15) of §4, Chap. V:
EE.(x) = E+E.()] = E[+E )] = EG) E(x)
Therefore, in the case of independence

Er.y) — EWED)
>0 6

Elxy)

is also equal to zero; 7, as is well known, is the correlation co-
effcient of z and y.

If two random variables z and y satisfy equation (6), then
they are called uncorrelated. For the sum

s

o,

§2. The Law of Large Numbers @
‘where the &, #,, . . ., 2, are uncorrelated in pairs, we can easily
compute that

) = o) ot + oo o) o @
In particular, equation (7) holds for the independent variables z..

§3. The Law of Large Numbers
Random variables ¢ of a sequence
ENr R

are called stable, if there exists a numerical sequence

sy
such that for any positive
Pllsn—dnl = e}

converges to zero as n— eo. If all E(s.) exist and if we may set
.= E(s),

then the stability is normal.
If all 5, are uniformly bounded, then from.

Plln—difzej=0  moteo o)
we obtain the relation
EG) —dal 0 B oo
and therefore
Pllss —E(s)l =} 0. no oo @

The stability of a bounded stable sequence is thus necessarily
normal.

Let

E(s, — Elsa)t = (s

According to the Tchebycheff inequality,
P{ls— E(s)] =} =

Therefore, the Markov Condition

@0 nete @)

is sufficient for normal stability.
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If 5.~ E(s.) are uniformly bounded:
I8a=E(s2) | = M,
then from the inequality (9) in §3, Chap. 1V,

Pllsn— B =) = =,
Therefore, in this case the Markov condition (3) is also necessary
for the stability of the s,.

1t

=tt

and the variables z, are uncorrelated in pairs, we have
7= (o) + 0te) + o + o))

Therefore, in this case, the following condition is sufficient for
the normal stability of the arithmetical means s,:

MO =0 ) £ o)+t () = o) (4)
(Theorem of Tchebychef)). In particular, condition (4) is ful-
filled if all variables z, are uniformly bounded.

This theorem can be generalized for the case of weakly cor-
related variables z,. If we assume that the coefficient of correla-
tion rn.’ of z,, and , satisfies the inequality

ran (]

and that

then a sufficient condition for normal stability of the arithmetic
‘means s is?
Cach=o(m). ®)
In the case of independent summands x, we can state a neces-
sary and sufficient condition for the stability of the arithmetic
means s,. For every z, there exists a constant m, (the median of
2,) which satisfies the following conditions:
Pln<ml=i,
Pla>m) =4

)

1 always.

. KNINTCIINE, Sur la loi forkdas grandes nombres. C. Tt de I
sci. Paris v. 186, 1923, v, 285,

§3. The Law of Large Numbers @
We set

e = 2 i | 2oy |

otherwise,

Sttt

Pl $2) 0, ns oo (6)
(5ma) = () ™

are necessary and suffcient for the stability of variables s,’.

We may here assume the constants d, to be equal to the E(s,")
50 that in the case where

E(s8) —E(s) 0 PR
(and only in this case) the stability is normal.

A turther generalization of Tehebyeheff's theorem s obtained
if we assume that the s, depend in some way upon the results of
any n trials,

LA .
50 that after each definite outcome of all these n trials s, assumes
a definite value. The general idea of all these theorems known as
the law of large mumbers, consists in the fact that if the depend-
ence of variables s, upon each separate trial 8, (k= 1,2, ..., n)
is very small for a large n, then the variables s, are stable. If we
regard

B = ElEm, - malse) — B, ()

as a reasonable measure of the dependence of variables s, upon
the trial W, then the above-mentioned general idea of the law of
large numbers can be made concrete by the following considera-
tions*.

Let

Ermm () — Eumymey (50)

0t A, Koustooomoy . Ober die Suwmmen durch den Zufall bestimmiar
snablingiger Grossems Wath: Ann. . 90, 1928 pp. 209315 (correctiops and
s b 021020 . 40458, Thenrem Vil and & uppiement
o

.t A Koustoaonox. Su lu L des grandes nombres. Rend. Accad. Lincel
v. 9, 1929 pp. 410.47%
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Then
Bl =nb b,
Elhu) = EEnn, . wu(s0) — EEqm,...u, (50 = E(s)
o) = E(E) = fla.
‘We can easily compute also that the random variables z,, (k =
1,2,..., n) are uncorrelated. For let i < k; then®

Es)

Bt e (i 2u)
=B Er o (52) — B (5]
() = Exy.ooe (52)] = 0

B (o)

ilE, ..

and therefore
E(zuzw) =

We thus have

o) = ) + 0% as) + - 0 eg) = By + B+ -+ Bl
Therefore, the condition

Pat Baat o+ 0 - oo
is sufficient for the normal stability of the variables s,.

§4. Notes on the Coneept of Mathematical Expectation

We have defined the mathematical expectation of a random
variable z as

£ = [+PWE) - [adFoe) |
‘where the integral on the right is understood as

(dﬂ"qp)=l1m['df‘"1x) fj;: e

B bt (@)

pplication of Formula (15) in §4, Chap. V.

§4. Notes on the Concept of Mathematical Expectation o

as a generalized mathematical expectation. We lose in this case,
of course, several simple properties of mathematical expectation.
For example, in this case the formula
Ez+u) = E(z) +E()
is not always true. In this form the generalization is hardly
admissible. We may add however that, with some restrictive
supplementary conditions,definition (2) becomes entirely natural
and useful.
We can discuss the problem as follows. Let

be a sequence of mutually independent variables
distribution function F)(a) =F(a), (n
Let further

having the same
L2...)asz

pomtntotn
We now ask whether there exists a constant E*(x) such that

for every ¢ > 0
UmP(lsy —E*®| >e)=0, n-stoo. (3)

‘The answer is : If such a constant E* (z) exists, it is expressed by
Formula (2). The necessary and sufficient condition that Formula
(3) hold consists in the existence of limit (2) and the relation

] @

Pl >n)

To prove this we apply the theorem that condition (4) is
mecessary and sufficient for the stability of the arithmetic means
8., where, in the case of stability, we may set¢

If there exists a mathematical expectation in the former sense
(Formula (1)), then condition (4) is always fulfilled". Since in
this case E(z) = E*(x), the condition (3) actually does define a
generalization of the concept of mathematical expectation. For
the generalized mathematical ezpectation, Properties 1-VII

CE A Koumogonoy . Bemerkungen u meiner Arbeit, “Uber die Summen

=ufliger Grossen.” Maih, An. . 102, 1990, pp. 484-488, Theorem X1
" Thid. Thanrem XTIT




[image: image37.png]o VI Independence; The Law of Large Numbers
(Chap. 1V, §2) still hold; in general, however, the existence of
E*| | does not follow from the existence of E* ().

To prove that the new concept of mathematical expeotation
is really more general than the previous one, it is sufficient to
give the following example. Set the probability density /¢ (a)
equal to

0 P —
60 = G e

where the constant.C is detormined by
[@aa=1.

It is easy to compute that in this case condition (4) is fulflled.
Formula (2) gives the value

E*(x) =0,

but the integral

JlalaFe @ :]]:\ @) da

diverges.

§5. Strong Law of Large Numbers; Convergence of Series
‘The random variables s, of the sequence

P

are strongly stable if there exists a sequence of numbers
[ J B
such that the random variables
Pry

almost certainly tend o zero as # - +oo. From strong stability
follows, obviously, ordinary stability. If we can choose

4, =E@),

then the strong stability is normal.
In the Tchebycheff case,

ntnt

§5. Strong Law of Large Numbers; Convergence of Series 67

where the variables , are mutually independent. A sufficient®
condition for the normal strong stability of the arithmetic means
s, is the convergence of the series

S

This condition is the best in the sense that for any series of con-
stants b, such that

. 53]

SN
we can build a series of mutually independent random variables
2, such that

oo,

ot (x) = b,

and the corresponding arithmetic means s, will not be strongly
stable.

1f all z, have the same distribution function F) (a), then the
existence of the mathematical expectation

€0 faaroia
is necessary and sufficient for the strong stability of s,
bility in this case is always normal’.
Again, let

the sta-

L9 S )

be mutually independent random variables. Then the probability
of convergence of the series

3, @

is equal either to one or to zero. In particular, this probability
equals one when both series

e

converge. Let us further assume

and 3o

Yo = zyincase [z, =1,

ya=Oincase|z,| > 1.
G, A Kotstoconov,” Sur 1 I forte des grandes nombre, C. . Acad. Sci.
Paris v. 191, 1930, pp. 910-011
*The proof of this statement has not yet beén published.
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Then in order that series (1) converge with the probability one,
it is necessary and sufficient™® that the following series converge
simultaneously :

ZPlsl>0, 3E6) and o,

" CE AL KHINTOHING and A. Kotstoconov, On the Convergence of Seris
Rec. Math. Soc. Moscow, v. 32, 1923, p. 668-677. ” M

Appendix

ZERO-OR-ONE LAW IN THE THEORY
OF PROBABILITY

We have noticed several cases in which certain limiting
probabilities are necessarily equal to zero or one. For example,
the probability of convergence of a series of independent random
variables may assume only these two values', We shall prove now.
a general theorem including many such cases.

THEOREM : Let 2, 2s ..., be any random variables and
let f(zy, 72 - - -, Zu, - - -) be a Baire function® of the variables
1y Tay -+ Ty - - such that the conditional probability

Prs el (6) = 0}
of the relation

oS stin ) =0
‘remains, when the first n variables 2,, 2., ...,
to the absolute probability

Py =0} a

for every n. Under these conditions the probability (1) equals
zero or one.

are known, equal

In particular, the assumptions of this theorem are fulfilled if
the variables z, are mutually independent and if the value of the
function f(z) remains unchanged when only a finite number of
variables are changed

Proof of the Theorem: Let us denote by A the event

f@) =0.

We shall also investigate the field & of all events which can be
defined through some relations among a finite number of vari-

G- Chap. V1, 5. The same hing i g of th probabilty

in the strong law of large numbers; at Ie
ally independent.

¥ A Baire function is one which can be obtained by successive passages to
the Timit of sequences of functions, sarting with polynomials.

o

- when the variables s, are mutu-
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ables z,. If event B belongs to &, then,according to the conditions
of the theorem,

Pa(d) = P(d). @
In the case P(4) =0 our theorem is already true. Let now
P(4) > 0. Then from (2) follows the formula

Pa(B) = CBE) i, @

and therefore P(B) and p, (B) are two completely additive set
functions, coinciding on &; therefore they must remain equal to
each other on every set of the Borel extension B8t of the field &,
Therefore, in particular,

PlA) = Py(d) =1,
which proves our theorem.

Several other cases in which we can state that certain prob-
abilities can assume only the values one and zero, were discovered
by P. Lévy. See P. LVY, Sur un théoréme de M. Khintchine, Bull,
des Sci. Math. v. 55, 1981, pp. 145-160, Theorem 1.
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The fundamental work on the measure-theoretic approach to
probability theory is A. N. Kolmogorov's Grundbegrifie der
Wahrscheinlichkeitsrechnung, of which the present work is an
English translation. It is not an overstatement to say that for
the past twenty-three years most of the research work in proba-
ity has been influenced by this approach, and that the axiomatic
theory advanced by Kolmogorov is considered by workers in
‘probability and statistics to be the correct one.

The publication of Kolmogorov's Grundbegriffe initiated a new
era in the theory of probability and its methods; and the amount
of research generated by the fundamental concepts due to Kolmo-
gorov has been very great indeed. In preparing this second edition
of the English translation of Kolmogorov's monograph, it scemed
desirable to give a bibliography that would in some way reflect
the present status and direction of research activity in the theory
of probability.

In recent years many excellent books have appeared. Three of
most outstanding in this group are those by Doob (12], Feller
[17), and Loéve [54]. Other books dealing with general proba-
bility theory, and specialized topics in probability are: (2], (3],
(6], [7], [9]. [19], [28], [26], (27], [28], [34], [39), [41]. [42],
[47], (49], [50], [67], [70], [72]. Since these books contain many.
references to the literature, an attempt will be made in this bibli-
ography to list some of the research papers that have appeared in
the past few years and several that are in the course of publication.

The model developed by Kolmogoroy can be briefly described
as follows: In every situation (that is, an experiment, observa-
tion, etc.) in which random factors enter, there is an associated
probability space or triple (2, ¢, p), where 2 is an abstract space
(the space of elementary events), ¢ is a s-algebra of subsets of 2
(the sets of events), and p(E) is a measure (the probability of
the event E) defined for £ c¢, and satisfying the condition
(@)= 1. The Kolmogorov model has recently been discussed by

n
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Lod [56), who considers the use of abstract algebras and -algebras
of sets instead of algebras and o-algebras. Kolmogorov [44] has
also considered the use of metric Boolean algebras in probability.

‘There are many problems, especially in theoretical physics, that
do ot it into the Kolmogorov theory, the reason being that these
problems involve unbounded measures. Rényi [68) has developed
a general axiomatic theory of probability (which contains Kolmo-
gorov's theory as a special case) in which unbounded measures
are allowed. The fundamental concept in this theory is the condi-
tional probability of an event. Csiszr [10] has studied the
measure-theoretic structure of the conditional probability spaces
that oceur in Rény?s theory.

In another direction, examples have been given by various
authors which point up the fact that Kolmogorov's theory is too
general. Gnedenko and Kolmogorov [27) have introduced a more
restricted concept which has been termed a perfect probability
space. A perfect probability space is a triple (4, ¢, p) such that for
any real-valued é-measurable function g and any linear set B
for which (w : g (w) ¢ B) ¢, there is a Borel set D¢ B such that
Pla:g(@)eD)= P : g(u)e B). Recently, Blackwell (5] has
introduced a concept that is more restricted than that of a per-
fect space. The concept introduced is that of a Lusin space. A
Lusin space is & pair (2, ¢) such that (a) ¢ is separable, and
(b) the range of every real-valued ¢measurable function g on
4 is an analytic set. It has been shown that if (2, ¢, p) is a Lusin
space and p any probability measure on ¢, then (2.¢7) is a
perfect probability space.

In § 6 of Chap. 1, Kolmogorov gives the definition of a Markov
chain. In recent years the theory of Markov chains and processes
has been one of the most active areas of research in probability.
An excellent introduction to this theory is given in [17]. Other
references are [2], 3], [6], [12], [19]. (23], [26], [34], (39],
[50], [54], (67, [70], [72]. Two papers of interest are those of
Harris and Robbins [29] on the ergodic theory of Markov chains,
and Chung [8] on the theory of continuous parameter processes
it denumerablo number of states. The paper by Chung unifies
and extends the results due to Doob (c é
Pl b (cf. [12]) and Lévy (51],

Notes 3

A number of workers in probability are utilizing the theory of
semi-groups (0] in the study of Markov processes and their
structural properties (63]. In this approach, due primarily to
Yosida [80], a one-parameter (discrete or continuous) semi-
group of operators from a Banach space to itself defines the
Markov process. Hille [32] and Kato [38] have used semi-group
methods to integrate the Kolmogorov differential equations, and
Kendall and Reuter (40] have investigated several pathological
cases arising in the theory. Feller [18] and Hille [81] have
studied the parabolic differential equations arising in the con-
tinuous case. Doob [18] has employed martingale theory in the
semi-group approach to one-dimensional diffusion_processes.
Also, Hunt [33] has studied semi-groups of (probability) meas-
ures on Lie groups.

Recently several papers have appeared which are devoted to &
more abstract approach to probability and consider random vari-
ables with values in a topological space which may have an alge-
braicstructure. In (14], [21], (22], [58], [59), and [61], problems
associated with Banach-space-valued random variables are con-
sidered; and in [4] similar problems ate considered for Orlicz
(generalized Lebesgue) spaces. Robbins [69] has considered
random variables with values in any compact topological group.
Segal [75] has studied the structure of probability algebras and
has used this algebraic approach to extend Kolmogoroy's theorem
concerning the existence of real-valued random variables having
any preassigned joint distribution (cf. § 4 of Chap. III). Segal
(76, Chap. 3, § 13] has also considered a non-commautative proba-
bility theory.

Prohorov [66] has studied convergence properties of proba-
bility distributions defined on Banach spaces and other function
spaces. These problems have been considered also by LeCam 48]
and Parzen [64].

‘The measure-theoretic definition and basic properties of condi-
tional probabilities and conditional expectations have been given
by Kolmogorov (Chap. IV cf. also [12] and [54]). Using an

abstract approach, S. T. C. Moy [60] has considered the prop-
erties of conditional expectation as a linear transformation of
the space of all extended real-valued measurable functions on a
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‘probability space into itself. In [61] she considers i
petaion of Dumach-pace-sahud sevdon vamben. Nope
mura and Turamuru (62] consider an expectation as a given
operation of a C*-algebra; and Umegaki [79] considers condi-
tional expectation as a mapping of a space of measurable opera-
tors belonging to a Ly-integrable class associated with a certain
#*-algebra into itself. The work of Umegaki is concerned with
the development of a non-commutative probability theory. The
results of Segal [74], Dye [15], and others, in abstract integration
theory are utilized in the above studies. Other papers of interest
are [1], [16], (36], and (5].

The L. Schwartz theory of distributions [73] has been utilized
::dci: and [24) i the study of genoralized stochastic processes;
o oy Fortet (201 and 1o [35) in the study of random

Several books devoted to the study of limit theorems in proba-
bilty are available: [21], [42], [47], and [49). In addition, szl]
and [54] should be consulted. Research and review papers of

interest are (1), [14), (25), [37). o
17y g - (141 (251, (371, 1461, 1651, (57, 165), (71,
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