|
|||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | ||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |
java.lang.Object | +--weka.classifiers.BVDecompose
Class for performing a Bias-Variance decomposition on any classifier using the method specified in:
R. Kohavi & D. Wolpert (1996), Bias plus variance decomposition for zero-one loss functions, in Proc. of the Thirteenth International Machine Learning Conference (ICML96) download postscript.
Valid options are:
-D
Turn on debugging output.
-W classname
Specify the full class name of a learner to perform the
decomposition on (required).
-t filename
Set the arff file to use for the decomposition (required).
-T num
Specify the number of instances in the training pool (default 100).
-c num
Specify the index of the class attribute (default last).
-x num
Set the number of train iterations (default 50).
-s num
Set the seed for the dataset randomisation (default 1).
Options after -- are passed to the designated sub-learner.
Constructor Summary | |
BVDecompose()
|
Method Summary | |
void |
decompose()
Carry out the bias-variance decomposition |
double |
getBias()
Get the calculated bias squared |
Classifier |
getClassifier()
Gets the name of the classifier being analysed |
int |
getClassIndex()
Get the index (starting from 1) of the attribute used as the class. |
java.lang.String |
getDataFileName()
Get the name of the data file used for the decomposition |
boolean |
getDebug()
Gets whether debugging is turned on |
double |
getError()
Get the calculated error rate |
java.lang.String[] |
getOptions()
Gets the current settings of the CheckClassifier. |
int |
getSeed()
Gets the random number seed |
double |
getSigma()
Get the calculated sigma squared |
int |
getTrainIterations()
Gets the maximum number of boost iterations |
int |
getTrainPoolSize()
Get the number of instances in the training pool. |
double |
getVariance()
Get the calculated variance |
java.util.Enumeration |
listOptions()
Returns an enumeration describing the available options. |
static void |
main(java.lang.String[] args)
Test method for this class |
void |
setClassifier(Classifier newClassifier)
Set the classifiers being analysed |
void |
setClassIndex(int classIndex)
Sets index of attribute to discretize on |
void |
setDataFileName(java.lang.String dataFileName)
Sets the maximum number of boost iterations |
void |
setDebug(boolean debug)
Sets debugging mode |
void |
setOptions(java.lang.String[] options)
Parses a given list of options. |
void |
setSeed(int seed)
Sets the random number seed |
void |
setTrainIterations(int trainIterations)
Sets the maximum number of boost iterations |
void |
setTrainPoolSize(int numTrain)
Set the number of instances in the training pool. |
java.lang.String |
toString()
Returns description of the bias-variance decomposition results. |
Methods inherited from class java.lang.Object |
equals, getClass, hashCode, notify, notifyAll, wait, wait, wait |
Constructor Detail |
public BVDecompose()
Method Detail |
public java.util.Enumeration listOptions()
listOptions
in interface OptionHandler
public void setOptions(java.lang.String[] options) throws java.lang.Exception
-D
Turn on debugging output.
-W classname
Specify the full class name of a learner to perform the
decomposition on (required).
-t filename
Set the arff file to use for the decomposition (required).
-T num
Specify the number of instances in the training pool (default 100).
-c num
Specify the index of the class attribute (default last).
-x num
Set the number of train iterations (default 50).
-s num
Set the seed for the dataset randomisation (default 1).
Options after -- are passed to the designated sub-learner.
setOptions
in interface OptionHandler
options
- the list of options as an array of strings
java.lang.Exception
- if an option is not supportedpublic java.lang.String[] getOptions()
getOptions
in interface OptionHandler
public int getTrainPoolSize()
public void setTrainPoolSize(int numTrain)
numTrain
- number of instances in the training pool.public void setClassifier(Classifier newClassifier)
newClassifier
- the Classifier to use.public Classifier getClassifier()
public void setDebug(boolean debug)
debug
- true if debug output should be printedpublic boolean getDebug()
public void setSeed(int seed)
public int getSeed()
public void setTrainIterations(int trainIterations)
public int getTrainIterations()
public void setDataFileName(java.lang.String dataFileName)
public java.lang.String getDataFileName()
public int getClassIndex()
public void setClassIndex(int classIndex)
public double getBias()
public double getVariance()
public double getSigma()
public double getError()
public void decompose() throws java.lang.Exception
java.lang.Exception
- if the decomposition couldn't be carried outpublic java.lang.String toString()
toString
in class java.lang.Object
public static void main(java.lang.String[] args)
args
- the command line arguments
|
|||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | ||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |
Copyright (c) 2003 David Lindsay, Computer Learning Research Centre, Dept. Computer Science, Royal Holloway, University of London