weka.classifiers.bayes
Class AODE

java.lang.Object
  |
  +--weka.classifiers.Classifier
        |
        +--weka.classifiers.bayes.AODE
All Implemented Interfaces:
java.lang.Cloneable, OptionHandler, java.io.Serializable, WeightedInstancesHandler

public class AODE
extends Classifier
implements OptionHandler, WeightedInstancesHandler

AODE achieves highly accurate classification by averaging over all of a small space of alternative naive-Bayes-like models that have weaker (and hence less detrimental) independence assumptions than naive Bayes. The resulting algorithm is computationally efficient while delivering highly accurate classification on many learning tasks.
For more information, see

G. Webb, J. Boughton & Z. Wang (2003). Not So Naive Bayes. Submitted for publication
G. Webb, J. Boughton & Z. Wang (2002). Averaged One-Dependence Estimators: Preliminary Results. AI2002 Data Mining Workshop, Canberra. Valid options are:

-D
Debugging information is printed if this flag is specified.

-F
Specify the frequency limit for parent attributes.

Version:
$Revision: 1.7 $
Author:
Janice Boughton (jrbought@csse.monash.edu.au) & Zhihai Wang (zhw@csse.monash.edu.au)
See Also:
Serialized Form

Constructor Summary
AODE()
           
 
Method Summary
 void buildClassifier(Instances instances)
          Generates the classifier.
 double[] distributionForInstance(Instance instance)
          Calculates the class membership probabilities for the given test instance.
 java.lang.String frequencyLimitForParentAttributesTipText()
          Returns the tip text for this property
 int getFrequencyLimitForParentAttributes()
          Return the frequency limit for parent attributes
 java.lang.String[] getOptions()
          Gets the current settings of the classifier.
 java.lang.String globalInfo()
          Returns a string describing this classifier
 java.util.Enumeration listOptions()
          Returns an enumeration describing the available options
static void main(java.lang.String[] argv)
          Main method for testing this class.
 double NBconditionalProb(Instance instance, int classVal)
          Calculates the probability of the specified class for the given test instance, using naive Bayes.
 void setFrequencyLimitForParentAttributes(int fl)
          Set the frequency limit for parent attributes
 void setOptions(java.lang.String[] options)
          Parses a given list of options.
 java.lang.String toString()
          Returns a description of the classifier.
 
Methods inherited from class weka.classifiers.Classifier
classifyInstance, debugTipText, forName, getDebug, makeCopies, setDebug
 
Methods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, wait, wait, wait
 

Constructor Detail

AODE

public AODE()
Method Detail

globalInfo

public java.lang.String globalInfo()
Returns a string describing this classifier

Returns:
a description of the classifier suitable for displaying in the explorer/experimenter gui

buildClassifier

public void buildClassifier(Instances instances)
                     throws java.lang.Exception
Generates the classifier.

Specified by:
buildClassifier in class Classifier
Parameters:
instances - set of instances serving as training data
Throws:
java.lang.Exception - if the classifier has not been generated successfully

distributionForInstance

public double[] distributionForInstance(Instance instance)
                                 throws java.lang.Exception
Calculates the class membership probabilities for the given test instance.

Overrides:
distributionForInstance in class Classifier
Parameters:
instance - the instance to be classified
Returns:
predicted class probability distribution
Throws:
java.lang.Exception - if there is a problem generating the prediction

NBconditionalProb

public double NBconditionalProb(Instance instance,
                                int classVal)
Calculates the probability of the specified class for the given test instance, using naive Bayes.

Parameters:
instance - the instance to be classified
classVal - the class for which to calculate the probability
Returns:
predicted class probability
Throws:
java.lang.Exception - if there is a problem generating the prediction

listOptions

public java.util.Enumeration listOptions()
Returns an enumeration describing the available options

Specified by:
listOptions in interface OptionHandler
Overrides:
listOptions in class Classifier
Returns:
an enumeration of all the available options

setOptions

public void setOptions(java.lang.String[] options)
                throws java.lang.Exception
Parses a given list of options. Valid options are:

-D
Debugging information is printed.

-F
Specify the frequency limit for parent attributes.

Specified by:
setOptions in interface OptionHandler
Overrides:
setOptions in class Classifier
Parameters:
options - the list of options as an array of strings
Throws:
java.lang.Exception - if an option is not supported

getOptions

public java.lang.String[] getOptions()
Gets the current settings of the classifier.

Specified by:
getOptions in interface OptionHandler
Overrides:
getOptions in class Classifier
Returns:
an array of strings suitable for passing to setOptions

frequencyLimitForParentAttributesTipText

public java.lang.String frequencyLimitForParentAttributesTipText()
Returns the tip text for this property

Returns:
tip text for this property suitable for displaying in the explorer/experimenter gui

setFrequencyLimitForParentAttributes

public void setFrequencyLimitForParentAttributes(int fl)
Set the frequency limit for parent attributes

Parameters:
fl - an int value

getFrequencyLimitForParentAttributes

public int getFrequencyLimitForParentAttributes()
Return the frequency limit for parent attributes

Returns:
an int value

toString

public java.lang.String toString()
Returns a description of the classifier.

Overrides:
toString in class java.lang.Object
Returns:
a description of the classifier as a string.

main

public static void main(java.lang.String[] argv)
Main method for testing this class.

Parameters:
argv - the options


Copyright (c) 2003 David Lindsay, Computer Learning Research Centre, Dept. Computer Science, Royal Holloway, University of London