weka.classifiers.evaluation
Class EvaluationUtils

java.lang.Object
  |
  +--weka.classifiers.evaluation.EvaluationUtils

public class EvaluationUtils
extends java.lang.Object

Contains utility functions for generating lists of predictions in various manners.

Version:
$Revision: 1.9 $
Author:
Len Trigg (len@reeltwo.com)

Constructor Summary
EvaluationUtils()
           
 
Method Summary
 FastVector getCVPredictions(Classifier classifier, Instances data, int numFolds)
          Generate a bunch of predictions ready for processing, by performing a cross-validation on the supplied dataset.
 Prediction getPrediction(Classifier classifier, Instance test)
          Generate a single prediction for a test instance given the pre-trained classifier.
 int getSeed()
          Gets the seed for randomization during cross-validation
 FastVector getTestPredictions(Classifier classifier, Instances test)
          Generate a bunch of predictions ready for processing, by performing a evaluation on a test set assuming the classifier is already trained.
 FastVector getTrainTestPredictions(Classifier classifier, Instances train, Instances test)
          Generate a bunch of predictions ready for processing, by performing a evaluation on a test set after training on the given training set.
 void setSeed(int seed)
          Sets the seed for randomization during cross-validation
 
Methods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
 

Constructor Detail

EvaluationUtils

public EvaluationUtils()
Method Detail

setSeed

public void setSeed(int seed)
Sets the seed for randomization during cross-validation


getSeed

public int getSeed()
Gets the seed for randomization during cross-validation


getCVPredictions

public FastVector getCVPredictions(Classifier classifier,
                                   Instances data,
                                   int numFolds)
                            throws java.lang.Exception
Generate a bunch of predictions ready for processing, by performing a cross-validation on the supplied dataset.

Parameters:
classifier - the Classifier to evaluate
data - the dataset
numFolds - the number of folds in the cross-validation.
Throws:
java.lang.Exception - if an error occurs

getTrainTestPredictions

public FastVector getTrainTestPredictions(Classifier classifier,
                                          Instances train,
                                          Instances test)
                                   throws java.lang.Exception
Generate a bunch of predictions ready for processing, by performing a evaluation on a test set after training on the given training set.

Parameters:
classifier - the Classifier to evaluate
train - the training dataset
test - the test dataset
Throws:
java.lang.Exception - if an error occurs

getTestPredictions

public FastVector getTestPredictions(Classifier classifier,
                                     Instances test)
                              throws java.lang.Exception
Generate a bunch of predictions ready for processing, by performing a evaluation on a test set assuming the classifier is already trained.

Parameters:
classifier - the pre-trained Classifier to evaluate
test - the test dataset
Throws:
java.lang.Exception - if an error occurs

getPrediction

public Prediction getPrediction(Classifier classifier,
                                Instance test)
                         throws java.lang.Exception
Generate a single prediction for a test instance given the pre-trained classifier.

Parameters:
classifier - the pre-trained Classifier to evaluate
test - the test instance
Throws:
java.lang.Exception - if an error occurs


Copyright (c) 2003 David Lindsay, Computer Learning Research Centre, Dept. Computer Science, Royal Holloway, University of London