|
|||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | ||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |
java.lang.Object | +--weka.classifiers.Classifier | +--weka.classifiers.functions.LinearRegression
Class for using linear regression for prediction. Uses the Akaike criterion for model selection, and is able to deal with weighted instances.
Valid options are:
-D
Produce debugging output.
-S num
Set the attriute selection method to use. 1 = None, 2 = Greedy
(default 0 = M5' method)
-C
Do not try to eliminate colinear attributes
-R num
The ridge parameter (default 1.0e-8)
Field Summary | |
static int |
SELECTION_GREEDY
|
static int |
SELECTION_M5
|
static int |
SELECTION_NONE
|
static Tag[] |
TAGS_SELECTION
|
Constructor Summary | |
LinearRegression()
|
Method Summary | |
java.lang.String |
attributeSelectionMethodTipText()
Returns the tip text for this property |
void |
buildClassifier(Instances data)
Builds a regression model for the given data. |
double |
classifyInstance(Instance instance)
Classifies the given instance using the linear regression function. |
double[] |
coefficients()
Returns the coefficients for this linear model. |
java.lang.String |
debugTipText()
Returns the tip text for this property |
java.lang.String |
eliminateColinearAttributesTipText()
Returns the tip text for this property |
SelectedTag |
getAttributeSelectionMethod()
Gets the method used to select attributes for use in the linear regression. |
boolean |
getDebug()
Controls whether debugging output will be printed |
boolean |
getEliminateColinearAttributes()
Get the value of EliminateColinearAttributes. |
java.lang.String[] |
getOptions()
Gets the current settings of the classifier. |
double |
getRidge()
Get the value of Ridge. |
java.lang.String |
globalInfo()
Returns a string describing this classifier |
java.util.Enumeration |
listOptions()
Returns an enumeration describing the available options. |
static void |
main(java.lang.String[] argv)
Generates a linear regression function predictor. |
int |
numParameters()
Get the number of coefficients used in the model |
java.lang.String |
ridgeTipText()
Returns the tip text for this property |
void |
setAttributeSelectionMethod(SelectedTag method)
Sets the method used to select attributes for use in the linear regression. |
void |
setDebug(boolean debug)
Controls whether debugging output will be printed |
void |
setEliminateColinearAttributes(boolean newEliminateColinearAttributes)
Set the value of EliminateColinearAttributes. |
void |
setOptions(java.lang.String[] options)
Parses a given list of options. |
void |
setRidge(double newRidge)
Set the value of Ridge. |
java.lang.String |
toString()
Outputs the linear regression model as a string. |
void |
turnChecksOff()
Turns off checks for missing values, etc. |
void |
turnChecksOn()
Turns on checks for missing values, etc. |
Methods inherited from class weka.classifiers.Classifier |
distributionForInstance, forName, makeCopies |
Methods inherited from class java.lang.Object |
equals, getClass, hashCode, notify, notifyAll, wait, wait, wait |
Field Detail |
public static final int SELECTION_M5
public static final int SELECTION_NONE
public static final int SELECTION_GREEDY
public static final Tag[] TAGS_SELECTION
Constructor Detail |
public LinearRegression()
Method Detail |
public void turnChecksOff()
public void turnChecksOn()
public java.lang.String globalInfo()
public void buildClassifier(Instances data) throws java.lang.Exception
buildClassifier
in class Classifier
data
- the training data to be used for generating the
linear regression function
java.lang.Exception
- if the classifier could not be built successfullypublic double classifyInstance(Instance instance) throws java.lang.Exception
classifyInstance
in class Classifier
instance
- the test instance
java.lang.Exception
- if classification can't be done successfullypublic java.lang.String toString()
toString
in class java.lang.Object
public java.util.Enumeration listOptions()
listOptions
in interface OptionHandler
listOptions
in class Classifier
public void setOptions(java.lang.String[] options) throws java.lang.Exception
-D
Produce debugging output.
-S num
Set the attriute selection method to use. 1 = None, 2 = Greedy
(default 0 = M5' method)
-C
Do not try to eliminate colinear attributes
-R num
The ridge parameter (default 1.0e-8)
setOptions
in interface OptionHandler
setOptions
in class Classifier
options
- the list of options as an array of strings
java.lang.Exception
- if an option is not supportedpublic double[] coefficients()
public java.lang.String[] getOptions()
getOptions
in interface OptionHandler
getOptions
in class Classifier
public java.lang.String ridgeTipText()
public double getRidge()
public void setRidge(double newRidge)
newRidge
- Value to assign to Ridge.public java.lang.String eliminateColinearAttributesTipText()
public boolean getEliminateColinearAttributes()
public void setEliminateColinearAttributes(boolean newEliminateColinearAttributes)
newEliminateColinearAttributes
- Value to assign to EliminateColinearAttributes.public int numParameters()
public java.lang.String attributeSelectionMethodTipText()
public void setAttributeSelectionMethod(SelectedTag method)
method
- the attribute selection method to use.public SelectedTag getAttributeSelectionMethod()
public java.lang.String debugTipText()
debugTipText
in class Classifier
public void setDebug(boolean debug)
setDebug
in class Classifier
debug
- true if debugging output should be printedpublic boolean getDebug()
getDebug
in class Classifier
public static void main(java.lang.String[] argv)
|
|||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | ||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |
Copyright (c) 2003 David Lindsay, Computer Learning Research Centre, Dept. Computer Science, Royal Holloway, University of London