|
|||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | ||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |
java.lang.Object | +--weka.classifiers.Classifier | +--weka.classifiers.functions.Winnow
Implements Winnow and Balanced Winnow algorithms by N. Littlestone. For more information, see
N. Littlestone (1988). Learning quickly when irrelevant attributes are abound: A new linear threshold algorithm. Machine Learning 2, pp. 285-318.
and N. Littlestone (1989). Mistake bounds and logarithmic linear-threshold learning algorithms. Technical report UCSC-CRL-89-11, University of California, Santa Cruz.
Valid options are:
-L
Use the baLanced variant (default: false)
-I num
The number of iterations to be performed. (default 1)
-A double
Promotion coefficient alpha. (default 2.0)
-B double
Demotion coefficient beta. (default 0.5)
-W double
Starting weights of the prediction coeffs. (default 2.0)
-H double
Prediction threshold. (default -1.0 == number of attributes)
-S int
Random seed to shuffle the input. (default 1), -1 == no shuffling
Constructor Summary | |
Winnow()
|
Method Summary | |
java.lang.String |
alphaTipText()
Returns the tip text for this property |
java.lang.String |
balancedTipText()
Returns the tip text for this property |
java.lang.String |
betaTipText()
Returns the tip text for this property |
void |
buildClassifier(Instances insts)
Builds the classifier |
double |
classifyInstance(Instance inst)
Outputs the prediction for the given instance. |
java.lang.String |
defaultWeightTipText()
Returns the tip text for this property |
double |
getAlpha()
Get the value of Alpha. |
boolean |
getBalanced()
Get the value of Balanced. |
double |
getBeta()
Get the value of Beta. |
double |
getDefaultWeight()
Get the value of defaultWeight. |
int |
getNumIterations()
Get the value of numIterations. |
java.lang.String[] |
getOptions()
Gets the current settings of the classifier. |
int |
getSeed()
Get the value of Seed. |
double |
getThreshold()
Get the value of Threshold. |
java.lang.String |
globalInfo()
Returns a string describing classifier |
java.util.Enumeration |
listOptions()
Returns an enumeration describing the available options |
static void |
main(java.lang.String[] argv)
Main method. |
java.lang.String |
numIterationsTipText()
Returns the tip text for this property |
java.lang.String |
seedTipText()
Returns the tip text for this property |
void |
setAlpha(double a)
Set the value of Alpha. |
void |
setBalanced(boolean b)
Set the value of Balanced. |
void |
setBeta(double b)
Set the value of Beta. |
void |
setDefaultWeight(double w)
Set the value of defaultWeight. |
void |
setNumIterations(int v)
Set the value of numIterations. |
void |
setOptions(java.lang.String[] options)
Parses a given list of options. |
void |
setSeed(int v)
Set the value of Seed. |
void |
setThreshold(double t)
Set the value of Threshold. |
java.lang.String |
thresholdTipText()
Returns the tip text for this property |
java.lang.String |
toString()
Returns textual description of the classifier. |
void |
updateClassifier(Instance instance)
Updates the classifier with a new learning example |
Methods inherited from class weka.classifiers.Classifier |
debugTipText, distributionForInstance, forName, getDebug, makeCopies, setDebug |
Methods inherited from class java.lang.Object |
equals, getClass, hashCode, notify, notifyAll, wait, wait, wait |
Constructor Detail |
public Winnow()
Method Detail |
public java.lang.String globalInfo()
public java.util.Enumeration listOptions()
listOptions
in interface OptionHandler
listOptions
in class Classifier
public void setOptions(java.lang.String[] options) throws java.lang.Exception
setOptions
in interface OptionHandler
setOptions
in class Classifier
options
- the list of options as an array of strings
java.lang.Exception
- if an option is not supportedpublic java.lang.String[] getOptions()
getOptions
in interface OptionHandler
getOptions
in class Classifier
public void buildClassifier(Instances insts) throws java.lang.Exception
buildClassifier
in class Classifier
insts
- set of instances serving as training data
java.lang.Exception
- if something goes wrong during buildingpublic void updateClassifier(Instance instance) throws java.lang.Exception
updateClassifier
in interface UpdateableClassifier
instance
- the instance to included
java.lang.Exception
- if something goes wrongpublic double classifyInstance(Instance inst) throws java.lang.Exception
classifyInstance
in class Classifier
inst
- the instance for which prediction is to be computed
java.lang.Exception
- if something goes wrongpublic java.lang.String toString()
toString
in class java.lang.Object
public java.lang.String balancedTipText()
public boolean getBalanced()
public void setBalanced(boolean b)
b
- Value to assign to Balanced.public java.lang.String alphaTipText()
public double getAlpha()
public void setAlpha(double a)
a
- Value to assign to Alpha.public java.lang.String betaTipText()
public double getBeta()
public void setBeta(double b)
b
- Value to assign to Beta.public java.lang.String thresholdTipText()
public double getThreshold()
public void setThreshold(double t)
t
- Value to assign to Threshold.public java.lang.String defaultWeightTipText()
public double getDefaultWeight()
public void setDefaultWeight(double w)
w
- Value to assign to defaultWeight.public java.lang.String numIterationsTipText()
public int getNumIterations()
public void setNumIterations(int v)
v
- Value to assign to numIterations.public java.lang.String seedTipText()
public int getSeed()
public void setSeed(int v)
v
- Value to assign to Seed.public static void main(java.lang.String[] argv)
|
|||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | ||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |
Copyright (c) 2003 David Lindsay, Computer Learning Research Centre, Dept. Computer Science, Royal Holloway, University of London