|
|||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | ||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |
java.lang.Object | +--weka.classifiers.Classifier | +--weka.classifiers.SingleClassifierEnhancer | +--weka.classifiers.lazy.LWL
Locally-weighted learning. Uses an instance-based algorithm to assign instance weights which are then used by a specified WeightedInstancesHandler. A good choice for classification is NaiveBayes. LinearRegression is suitable for regression problems. For more information, see
Eibe Frank, Mark Hall, and Bernhard Pfahringer (2003). Locally Weighted Naive Bayes. Working Paper 04/03, Department of Computer Science, University of Waikato. Atkeson, C., A. Moore, and S. Schaal (1996) Locally weighted learning download postscript.
Valid options are:
-D
Produce debugging output.
-K num
Set the number of neighbours used for setting kernel bandwidth.
(default all)
-W num
Set the weighting kernel shape to use. 1 = Inverse, 2 = Gaussian.
(default 0 = Linear)
-B classname
Specify the full class name of a base classifier (which needs
to be a WeightedInstancesHandler).
Constructor Summary | |
LWL()
Constructor. |
Method Summary | |
void |
buildClassifier(Instances instances)
Generates the classifier. |
double[] |
distributionForInstance(Instance instance)
Calculates the class membership probabilities for the given test instance. |
int |
getKNN()
Gets the number of neighbours used for kernel bandwidth setting. |
java.lang.String[] |
getOptions()
Gets the current settings of the classifier. |
int |
getWeightingKernel()
Gets the kernel weighting method to use. |
java.lang.String |
globalInfo()
Returns a string describing classifier |
java.lang.String |
KNNTipText()
Returns the tip text for this property |
java.util.Enumeration |
listOptions()
Returns an enumeration describing the available options. |
static void |
main(java.lang.String[] argv)
Main method for testing this class. |
void |
setKNN(int knn)
Sets the number of neighbours used for kernel bandwidth setting. |
void |
setOptions(java.lang.String[] options)
Parses a given list of options. |
void |
setWeightingKernel(int kernel)
Sets the kernel weighting method to use. |
java.lang.String |
toString()
Returns a description of this classifier. |
void |
updateClassifier(Instance instance)
Adds the supplied instance to the training set |
java.lang.String |
weightingKernelTipText()
Returns the tip text for this property |
Methods inherited from class weka.classifiers.SingleClassifierEnhancer |
classifierTipText, getClassifier, setClassifier |
Methods inherited from class weka.classifiers.Classifier |
classifyInstance, debugTipText, forName, getDebug, makeCopies, setDebug |
Methods inherited from class java.lang.Object |
equals, getClass, hashCode, notify, notifyAll, wait, wait, wait |
Constructor Detail |
public LWL()
Method Detail |
public java.lang.String globalInfo()
public java.util.Enumeration listOptions()
listOptions
in interface OptionHandler
listOptions
in class SingleClassifierEnhancer
public void setOptions(java.lang.String[] options) throws java.lang.Exception
-D
Produce debugging output.
-K num
Set the number of neighbours used for setting kernel bandwidth.
(default all)
-W num
Set the weighting kernel shape to use. 1 = Inverse, 2 = Gaussian.
(default 0 = Linear)
-B classname
Specify the full class name of a base classifier (which needs
to be a WeightedInstancesHandler).
setOptions
in interface OptionHandler
setOptions
in class SingleClassifierEnhancer
options
- the list of options as an array of strings
java.lang.Exception
- if an option is not supportedpublic java.lang.String[] getOptions()
getOptions
in interface OptionHandler
getOptions
in class SingleClassifierEnhancer
public java.lang.String KNNTipText()
public void setKNN(int knn)
knn
- the number of neighbours included inside the kernel
bandwidth, or 0 to specify using all neighbors.public int getKNN()
public java.lang.String weightingKernelTipText()
public void setWeightingKernel(int kernel)
kernel
- the new kernel method to use. Must be one of LINEAR,
INVERSE, or GAUSSpublic int getWeightingKernel()
public void buildClassifier(Instances instances) throws java.lang.Exception
buildClassifier
in class Classifier
instances
- set of instances serving as training data
java.lang.Exception
- if the classifier has not been generated successfullypublic void updateClassifier(Instance instance) throws java.lang.Exception
updateClassifier
in interface UpdateableClassifier
instance
- the instance to add
java.lang.Exception
- if instance could not be incorporated
successfullypublic double[] distributionForInstance(Instance instance) throws java.lang.Exception
distributionForInstance
in class Classifier
instance
- the instance to be classified
java.lang.Exception
- if distribution can't be computed successfullypublic java.lang.String toString()
toString
in class java.lang.Object
public static void main(java.lang.String[] argv)
argv
- the options
|
|||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | ||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |
Copyright (c) 2003 David Lindsay, Computer Learning Research Centre, Dept. Computer Science, Royal Holloway, University of London