weka.classifiers.lazy.kstar
Class KStarNumericAttribute

java.lang.Object
  |
  +--weka.classifiers.lazy.kstar.KStarNumericAttribute
All Implemented Interfaces:
KStarConstants

public class KStarNumericAttribute
extends java.lang.Object
implements KStarConstants

A custom class which provides the environment for computing the transformation probability of a specified test instance numeric attribute to a specified train instance numeric attribute.

Version:
$Revision 1.0 $
Author:
Len Trigg (len@reeltwo.com), Abdelaziz Mahoui (am14@cs.waikato.ac.nz)

Field Summary
 
Fields inherited from interface weka.classifiers.lazy.kstar.KStarConstants
B_ENTROPY, B_SPHERE, EPSILON, FLOOR, FLOOR1, INITIAL_STEP, LOG2, M_AVERAGE, M_DELETE, M_MAXDIFF, M_NORMAL, NUM_RAND_COLS, OFF, ON, ROOT_FINDER_ACCURACY, ROOT_FINDER_MAX_ITER
 
Constructor Summary
KStarNumericAttribute(Instance test, Instance train, int attrIndex, Instances trainSet, int[][] randClassCols, KStarCache cache)
          Constructor
 
Method Summary
 void setBlendFactor(int factor)
          Set the blending factor
 void setBlendMethod(int method)
          Set the blending method
 void setMissingMode(int mode)
          Set the missing value mode.
 void setOptions(int missingmode, int blendmethod, int blendfactor)
          Set options.
 double transProb()
          Calculates the transformation probability of the attribute indexed "m_AttrIndex" in test instance "m_Test" to the same attribute in the train instance "m_Train".
 
Methods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
 

Constructor Detail

KStarNumericAttribute

public KStarNumericAttribute(Instance test,
                             Instance train,
                             int attrIndex,
                             Instances trainSet,
                             int[][] randClassCols,
                             KStarCache cache)
Constructor

Method Detail

transProb

public double transProb()
Calculates the transformation probability of the attribute indexed "m_AttrIndex" in test instance "m_Test" to the same attribute in the train instance "m_Train".

Returns:
the probability value

setOptions

public void setOptions(int missingmode,
                       int blendmethod,
                       int blendfactor)
Set options.

Parameters:
missingmode - the missing value treatment to use
blendmethod - the blending method to use
blendfactor - the level of blending to use

setMissingMode

public void setMissingMode(int mode)
Set the missing value mode.

Parameters:
mode - the type of missing value treatment to use

setBlendMethod

public void setBlendMethod(int method)
Set the blending method

Parameters:
method - the blending method to use

setBlendFactor

public void setBlendFactor(int factor)
Set the blending factor

Parameters:
factor - the level of blending to use


Copyright (c) 2003 David Lindsay, Computer Learning Research Centre, Dept. Computer Science, Royal Holloway, University of London