weka.classifiers.meta
Class AttributeSelectedClassifier

java.lang.Object
  |
  +--weka.classifiers.Classifier
        |
        +--weka.classifiers.meta.AttributeSelectedClassifier
All Implemented Interfaces:
AdditionalMeasureProducer, java.lang.Cloneable, Drawable, OptionHandler, java.io.Serializable

public class AttributeSelectedClassifier
extends Classifier
implements OptionHandler, Drawable, AdditionalMeasureProducer

Class for running an arbitrary classifier on data that has been reduced through attribute selection.

Valid options from the command line are:

-W classifierstring
Classifierstring should contain the full class name of a classifier followed by options to the classifier. (required).

-E evaluatorstring
Evaluatorstring should contain the full class name of an attribute evaluator followed by any options. (required).

-S searchstring
Searchstring should contain the full class name of a search method followed by any options. (required).

Version:
$Revision: 1.14 $
Author:
Mark Hall (mhall@cs.waikato.ac.nz)
See Also:
Serialized Form

Field Summary
 
Fields inherited from interface weka.core.Drawable
BayesNet, NOT_DRAWABLE, TREE
 
Constructor Summary
AttributeSelectedClassifier()
           
 
Method Summary
 void buildClassifier(Instances data)
          Build the classifier on the dimensionally reduced data.
 java.lang.String classifierTipText()
          Returns the tip text for this property
 double[] distributionForInstance(Instance instance)
          Classifies a given instance after attribute selection
 java.util.Enumeration enumerateMeasures()
          Returns an enumeration of the additional measure names
 java.lang.String evaluatorTipText()
          Returns the tip text for this property
 Classifier getClassifier()
          Gets the classifier used.
 ASEvaluation getEvaluator()
          Gets the attribute evaluator used
 double getMeasure(java.lang.String additionalMeasureName)
          Returns the value of the named measure
 java.lang.String[] getOptions()
          Gets the current settings of the Classifier.
 ASSearch getSearch()
          Gets the search method used
 java.lang.String globalInfo()
          Returns a string describing this search method
 java.lang.String graph()
          Returns graph describing the classifier (if possible).
 int graphType()
          Returns the type of graph this classifier represents.
 java.util.Enumeration listOptions()
          Returns an enumeration describing the available options.
static void main(java.lang.String[] argv)
          Main method for testing this class.
 double measureNumAttributesSelected()
          Additional measure --- number of attributes selected
 double measureSelectionTime()
          Additional measure --- time taken (milliseconds) to select the attributes
 double measureTime()
          Additional measure --- time taken (milliseconds) to select attributes and build the classifier
 java.lang.String searchTipText()
          Returns the tip text for this property
 void setClassifier(Classifier classifier)
          Sets the classifier
 void setEvaluator(ASEvaluation evaluator)
          Sets the attribute evaluator
 void setOptions(java.lang.String[] options)
          Parses a given list of options.
 void setSearch(ASSearch search)
          Sets the search method
 java.lang.String toString()
          Output a representation of this classifier
 
Methods inherited from class weka.classifiers.Classifier
classifyInstance, debugTipText, forName, getDebug, makeCopies, setDebug
 
Methods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, wait, wait, wait
 

Constructor Detail

AttributeSelectedClassifier

public AttributeSelectedClassifier()
Method Detail

globalInfo

public java.lang.String globalInfo()
Returns a string describing this search method

Returns:
a description of the search method suitable for displaying in the explorer/experimenter gui

listOptions

public java.util.Enumeration listOptions()
Returns an enumeration describing the available options.

Specified by:
listOptions in interface OptionHandler
Overrides:
listOptions in class Classifier
Returns:
an enumeration of all the available options.

setOptions

public void setOptions(java.lang.String[] options)
                throws java.lang.Exception
Parses a given list of options. Valid options are:

-W classifierstring
Classifierstring should contain the full class name of a classifier followed by options to the classifier. (required).

-E evaluatorstring
Evaluatorstring should contain the full class name of an attribute evaluator followed by any options. (required).

-S searchstring
Searchstring should contain the full class name of a search method followed by any options. (required).

Specified by:
setOptions in interface OptionHandler
Overrides:
setOptions in class Classifier
Parameters:
options - the list of options as an array of strings
Throws:
java.lang.Exception - if an option is not supported

getOptions

public java.lang.String[] getOptions()
Gets the current settings of the Classifier.

Specified by:
getOptions in interface OptionHandler
Overrides:
getOptions in class Classifier
Returns:
an array of strings suitable for passing to setOptions

classifierTipText

public java.lang.String classifierTipText()
Returns the tip text for this property

Returns:
tip text for this property suitable for displaying in the explorer/experimenter gui

setClassifier

public void setClassifier(Classifier classifier)
Sets the classifier

Parameters:
classifier - the classifier with all options set.

getClassifier

public Classifier getClassifier()
Gets the classifier used.

Returns:
the classifier

evaluatorTipText

public java.lang.String evaluatorTipText()
Returns the tip text for this property

Returns:
tip text for this property suitable for displaying in the explorer/experimenter gui

setEvaluator

public void setEvaluator(ASEvaluation evaluator)
Sets the attribute evaluator

Parameters:
evaluator - the evaluator with all options set.

getEvaluator

public ASEvaluation getEvaluator()
Gets the attribute evaluator used

Returns:
the attribute evaluator

searchTipText

public java.lang.String searchTipText()
Returns the tip text for this property

Returns:
tip text for this property suitable for displaying in the explorer/experimenter gui

setSearch

public void setSearch(ASSearch search)
Sets the search method

Parameters:
search - the search method with all options set.

getSearch

public ASSearch getSearch()
Gets the search method used

Returns:
the search method

buildClassifier

public void buildClassifier(Instances data)
                     throws java.lang.Exception
Build the classifier on the dimensionally reduced data.

Specified by:
buildClassifier in class Classifier
Parameters:
data - the training data
Throws:
java.lang.Exception - if the classifier could not be built successfully

distributionForInstance

public double[] distributionForInstance(Instance instance)
                                 throws java.lang.Exception
Classifies a given instance after attribute selection

Overrides:
distributionForInstance in class Classifier
Parameters:
instance - the instance to be classified
Returns:
an array containing the estimated membership probabilities of the test instance in each class or the numeric prediction
Throws:
java.lang.Exception - if instance could not be classified successfully

graphType

public int graphType()
Returns the type of graph this classifier represents.

Specified by:
graphType in interface Drawable
Returns:
the type of graph representing the object

graph

public java.lang.String graph()
                       throws java.lang.Exception
Returns graph describing the classifier (if possible).

Specified by:
graph in interface Drawable
Returns:
the graph of the classifier in dotty format
Throws:
java.lang.Exception - if the classifier cannot be graphed

toString

public java.lang.String toString()
Output a representation of this classifier

Overrides:
toString in class java.lang.Object

measureNumAttributesSelected

public double measureNumAttributesSelected()
Additional measure --- number of attributes selected

Returns:
the number of attributes selected

measureSelectionTime

public double measureSelectionTime()
Additional measure --- time taken (milliseconds) to select the attributes

Returns:
the time taken to select attributes

measureTime

public double measureTime()
Additional measure --- time taken (milliseconds) to select attributes and build the classifier

Returns:
the total time (select attributes + build classifier)

enumerateMeasures

public java.util.Enumeration enumerateMeasures()
Returns an enumeration of the additional measure names

Specified by:
enumerateMeasures in interface AdditionalMeasureProducer
Returns:
an enumeration of the measure names

getMeasure

public double getMeasure(java.lang.String additionalMeasureName)
Returns the value of the named measure

Specified by:
getMeasure in interface AdditionalMeasureProducer
Parameters:
additionalMeasureName - the name of the measure to query for its value
Returns:
the value of the named measure
Throws:
java.lang.IllegalArgumentException - if the named measure is not supported

main

public static void main(java.lang.String[] argv)
Main method for testing this class.

Parameters:
argv - should contain the following arguments: -t training file [-T test file] [-c class index]


Copyright (c) 2003 David Lindsay, Computer Learning Research Centre, Dept. Computer Science, Royal Holloway, University of London