|
|||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | ||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |
java.lang.Object | +--weka.classifiers.Classifier | +--weka.classifiers.SingleClassifierEnhancer | +--weka.classifiers.IteratedSingleClassifierEnhancer | +--weka.classifiers.RandomizableIteratedSingleClassifierEnhancer | +--weka.classifiers.meta.LogitBoost
Class for performing additive logistic regression.. This class performs classification using a regression scheme as the base learner, and can handle multi-class problems. For more information, see
Friedman, J., T. Hastie and R. Tibshirani (1998) Additive Logistic Regression: a Statistical View of Boosting download postscript.
Valid options are:
-D
Turn on debugging output.
-W classname
Specify the full class name of a weak learner as the basis for
boosting (required).
-I num
Set the number of boost iterations (default 10).
-Q
Use resampling instead of reweighting.
-S seed
Random number seed for resampling (default 1).
-P num
Set the percentage of weight mass used to build classifiers
(default 100).
-F num
Set number of folds for the internal cross-validation
(default 0 -- no cross-validation).
-R num
Set number of runs for the internal cross-validation
(default 1).
-L num
Set the threshold for the improvement of the
average loglikelihood (default -Double.MAX_VALUE).
-H num
Set the value of the shrinkage parameter (default 1).
Options after -- are passed to the designated learner.
Constructor Summary | |
LogitBoost()
Constructor. |
Method Summary | |
void |
buildClassifier(Instances data)
Builds the boosted classifier |
Classifier[][] |
classifiers()
Returns the array of classifiers that have been built. |
double[] |
distributionForInstance(Instance instance)
Calculates the class membership probabilities for the given test instance. |
double |
getLikelihoodThreshold()
Get the value of Precision. |
int |
getNumFolds()
Get the value of NumFolds. |
int |
getNumRuns()
Get the value of NumRuns. |
java.lang.String[] |
getOptions()
Gets the current settings of the Classifier. |
double |
getShrinkage()
Get the value of Shrinkage. |
boolean |
getUseResampling()
Get whether resampling is turned on |
int |
getWeightThreshold()
Get the degree of weight thresholding |
java.lang.String |
globalInfo()
Returns a string describing classifier |
java.lang.String |
likelihoodThresholdTipText()
Returns the tip text for this property |
java.util.Enumeration |
listOptions()
Returns an enumeration describing the available options. |
static void |
main(java.lang.String[] argv)
Main method for testing this class. |
java.lang.String |
numFoldsTipText()
Returns the tip text for this property |
java.lang.String |
numRunsTipText()
Returns the tip text for this property |
void |
setLikelihoodThreshold(double newPrecision)
Set the value of Precision. |
void |
setNumFolds(int newNumFolds)
Set the value of NumFolds. |
void |
setNumRuns(int newNumRuns)
Set the value of NumRuns. |
void |
setOptions(java.lang.String[] options)
Parses a given list of options. |
void |
setShrinkage(double newShrinkage)
Set the value of Shrinkage. |
void |
setUseResampling(boolean r)
Set resampling mode |
void |
setWeightThreshold(int threshold)
Set weight thresholding |
java.lang.String |
shrinkageTipText()
Returns the tip text for this property |
java.lang.String |
toSource(java.lang.String className)
Returns the boosted model as Java source code. |
java.lang.String |
toString()
Returns description of the boosted classifier. |
java.lang.String |
useResamplingTipText()
Returns the tip text for this property |
java.lang.String |
weightThresholdTipText()
Returns the tip text for this property |
Methods inherited from class weka.classifiers.RandomizableIteratedSingleClassifierEnhancer |
getSeed, seedTipText, setSeed |
Methods inherited from class weka.classifiers.IteratedSingleClassifierEnhancer |
getNumIterations, numIterationsTipText, setNumIterations |
Methods inherited from class weka.classifiers.SingleClassifierEnhancer |
classifierTipText, getClassifier, setClassifier |
Methods inherited from class weka.classifiers.Classifier |
classifyInstance, debugTipText, forName, getDebug, makeCopies, setDebug |
Methods inherited from class java.lang.Object |
equals, getClass, hashCode, notify, notifyAll, wait, wait, wait |
Constructor Detail |
public LogitBoost()
Method Detail |
public java.lang.String globalInfo()
public java.util.Enumeration listOptions()
listOptions
in interface OptionHandler
listOptions
in class RandomizableIteratedSingleClassifierEnhancer
public void setOptions(java.lang.String[] options) throws java.lang.Exception
-D
Turn on debugging output.
-W classname
Specify the full class name of a weak learner as the basis for
boosting (required).
-I num
Set the number of boost iterations (default 10).
-Q
Use resampling instead of reweighting.
-S seed
Random number seed for resampling (default 1).
-P num
Set the percentage of weight mass used to build classifiers
(default 100).
-F num
Set number of folds for the internal cross-validation
(default 0 -- no cross-validation).
-R num
Set number of runs for the internal cross-validation
(default 1.
-L num
Set the threshold for the improvement of the
average loglikelihood (default -Double.MAX_VALUE).
-H num
Set the value of the shrinkage parameter (default 1).
Options after -- are passed to the designated learner.
setOptions
in interface OptionHandler
setOptions
in class RandomizableIteratedSingleClassifierEnhancer
options
- the list of options as an array of strings
java.lang.Exception
- if an option is not supportedpublic java.lang.String[] getOptions()
getOptions
in interface OptionHandler
getOptions
in class RandomizableIteratedSingleClassifierEnhancer
public java.lang.String shrinkageTipText()
public double getShrinkage()
public void setShrinkage(double newShrinkage)
newShrinkage
- Value to assign to Shrinkage.public java.lang.String likelihoodThresholdTipText()
public double getLikelihoodThreshold()
public void setLikelihoodThreshold(double newPrecision)
newPrecision
- Value to assign to Precision.public java.lang.String numRunsTipText()
public int getNumRuns()
public void setNumRuns(int newNumRuns)
newNumRuns
- Value to assign to NumRuns.public java.lang.String numFoldsTipText()
public int getNumFolds()
public void setNumFolds(int newNumFolds)
newNumFolds
- Value to assign to NumFolds.public java.lang.String useResamplingTipText()
public void setUseResampling(boolean r)
public boolean getUseResampling()
public java.lang.String weightThresholdTipText()
public void setWeightThreshold(int threshold)
public int getWeightThreshold()
public void buildClassifier(Instances data) throws java.lang.Exception
buildClassifier
in class IteratedSingleClassifierEnhancer
data
- the training data to be used for generating the
bagged classifier.
java.lang.Exception
- if the classifier could not be built successfullypublic Classifier[][] classifiers()
public double[] distributionForInstance(Instance instance) throws java.lang.Exception
distributionForInstance
in class Classifier
instance
- the instance to be classified
java.lang.Exception
- if instance could not be classified
successfullypublic java.lang.String toSource(java.lang.String className) throws java.lang.Exception
toSource
in interface Sourcable
className
- the name that should be given to the source class.
java.lang.Exception
- if something goes wrongpublic java.lang.String toString()
toString
in class java.lang.Object
public static void main(java.lang.String[] argv)
argv
- the options
|
|||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | ||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |
Copyright (c) 2003 David Lindsay, Computer Learning Research Centre, Dept. Computer Science, Royal Holloway, University of London