|
|||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | ||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |
java.lang.Object | +--weka.classifiers.Classifier | +--weka.classifiers.MultipleClassifiersCombiner | +--weka.classifiers.RandomizableMultipleClassifiersCombiner | +--weka.classifiers.meta.MultiScheme
Class for selecting a classifier from among several using cross validation on the training data or the performance on the training data. Performance is measured based on percent correct (classification) or mean-squared error (regression).
Valid options from the command line are:
-D
Turn on debugging output.
-S seed
Random number seed (default 1).
-B classifierstring
Classifierstring should contain the full class name of a scheme
included for selection followed by options to the classifier
(required, option should be used once for each classifier).
-X num_folds
Use cross validation error as the basis for classifier selection.
(default 0, is to use error on the training data instead)
Constructor Summary | |
MultiScheme()
|
Method Summary | |
void |
buildClassifier(Instances data)
Buildclassifier selects a classifier from the set of classifiers by minimising error on the training data. |
java.lang.String |
classifiersTipText()
Returns the tip text for this property |
java.lang.String |
debugTipText()
Returns the tip text for this property |
double[] |
distributionForInstance(Instance instance)
Returns class probabilities. |
Classifier |
getClassifier(int index)
Gets a single classifier from the set of available classifiers. |
Classifier[] |
getClassifiers()
Gets the list of possible classifers to choose from. |
boolean |
getDebug()
Get whether debugging is turned on |
int |
getNumFolds()
Gets the number of folds for cross-validation. |
java.lang.String[] |
getOptions()
Gets the current settings of the Classifier. |
int |
getSeed()
Gets the random number seed. |
java.lang.String |
globalInfo()
Returns a string describing classifier |
java.util.Enumeration |
listOptions()
Returns an enumeration describing the available options. |
static void |
main(java.lang.String[] argv)
Main method for testing this class. |
java.lang.String |
numFoldsTipText()
Returns the tip text for this property |
java.lang.String |
seedTipText()
Returns the tip text for this property |
void |
setClassifiers(Classifier[] classifiers)
Sets the list of possible classifers to choose from. |
void |
setDebug(boolean debug)
Set debugging mode |
void |
setNumFolds(int numFolds)
Sets the number of folds for cross-validation. |
void |
setOptions(java.lang.String[] options)
Parses a given list of options. |
void |
setSeed(int seed)
Sets the seed for random number generation. |
java.lang.String |
toString()
Output a representation of this classifier |
Methods inherited from class weka.classifiers.Classifier |
classifyInstance, forName, makeCopies |
Methods inherited from class java.lang.Object |
equals, getClass, hashCode, notify, notifyAll, wait, wait, wait |
Constructor Detail |
public MultiScheme()
Method Detail |
public java.lang.String globalInfo()
public java.util.Enumeration listOptions()
listOptions
in interface OptionHandler
listOptions
in class RandomizableMultipleClassifiersCombiner
public void setOptions(java.lang.String[] options) throws java.lang.Exception
-D
Turn on debugging output.
-S seed
Random number seed (default 1).
-B classifierstring
Classifierstring should contain the full class name of a scheme
included for selection followed by options to the classifier
(required, option should be used once for each classifier).
-X num_folds
Use cross validation error as the basis for classifier selection.
(default 0, is to use error on the training data instead)
setOptions
in interface OptionHandler
setOptions
in class RandomizableMultipleClassifiersCombiner
options
- the list of options as an array of strings
java.lang.Exception
- if an option is not supportedpublic java.lang.String[] getOptions()
getOptions
in interface OptionHandler
getOptions
in class RandomizableMultipleClassifiersCombiner
public java.lang.String classifiersTipText()
classifiersTipText
in class MultipleClassifiersCombiner
public void setClassifiers(Classifier[] classifiers)
setClassifiers
in class MultipleClassifiersCombiner
classifiers
- an array of classifiers with all options set.public Classifier[] getClassifiers()
getClassifiers
in class MultipleClassifiersCombiner
public Classifier getClassifier(int index)
getClassifier
in class MultipleClassifiersCombiner
index
- the index of the classifier wanted
public java.lang.String seedTipText()
seedTipText
in class RandomizableMultipleClassifiersCombiner
public void setSeed(int seed)
setSeed
in interface Randomizable
setSeed
in class RandomizableMultipleClassifiersCombiner
seed
- the random number seedpublic int getSeed()
getSeed
in interface Randomizable
getSeed
in class RandomizableMultipleClassifiersCombiner
public java.lang.String numFoldsTipText()
public int getNumFolds()
public void setNumFolds(int numFolds)
numFolds
- the number of folds for cross-validationpublic java.lang.String debugTipText()
debugTipText
in class Classifier
public void setDebug(boolean debug)
setDebug
in class Classifier
debug
- true if debug output should be printedpublic boolean getDebug()
getDebug
in class Classifier
public void buildClassifier(Instances data) throws java.lang.Exception
buildClassifier
in class Classifier
data
- the training data to be used for generating the
boosted classifier.
java.lang.Exception
- if the classifier could not be built successfullypublic double[] distributionForInstance(Instance instance) throws java.lang.Exception
distributionForInstance
in class Classifier
instance
- the instance to be classified
java.lang.Exception
- if instance could not be classified
successfullypublic java.lang.String toString()
toString
in class java.lang.Object
public static void main(java.lang.String[] argv)
argv
- should contain the following arguments:
-t training file [-T test file] [-c class index]
|
|||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | ||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |
Copyright (c) 2003 David Lindsay, Computer Learning Research Centre, Dept. Computer Science, Royal Holloway, University of London