weka.classifiers.misc
Class VFI
java.lang.Object
|
+--weka.classifiers.Classifier
|
+--weka.classifiers.misc.VFI
- All Implemented Interfaces:
- java.lang.Cloneable, OptionHandler, java.io.Serializable, WeightedInstancesHandler
- public class VFI
- extends Classifier
- implements OptionHandler, WeightedInstancesHandler
Class implementing the voting feature interval classifier. For numeric
attributes, upper and lower boundaries (intervals) are constructed
around each class. Discrete attributes have point intervals. Class counts
are recorded for each interval on each feature. Classification is by
voting. Missing values are ignored. Does not handle numeric class.
Have added a simple attribute weighting scheme. Higher weight is assigned
to more confident intervals, where confidence is a function of entropy:
weight (att_i) = (entropy of class distrib att_i / max uncertainty)^-bias.
Faster than NaiveBayes but slower than HyperPipes.
Confidence: 0.01 (two tailed)
Dataset (1) VFI '-B | (2) Hyper (3) Naive
------------------------------------
anneal.ORIG (10) 74.56 | 97.88 v 74.77
anneal (10) 71.83 | 97.88 v 86.51 v
audiology (10) 51.69 | 66.26 v 72.25 v
autos (10) 57.63 | 62.79 v 57.76
balance-scale (10) 68.72 | 46.08 * 90.5 v
breast-cancer (10) 67.25 | 69.84 v 73.12 v
wisconsin-breast-cancer (10) 95.72 | 88.31 * 96.05 v
horse-colic.ORIG (10) 66.13 | 70.41 v 66.12
horse-colic (10) 78.36 | 62.07 * 78.28
credit-rating (10) 85.17 | 44.58 * 77.84 *
german_credit (10) 70.81 | 69.89 * 74.98 v
pima_diabetes (10) 62.13 | 65.47 v 75.73 v
Glass (10) 56.82 | 50.19 * 47.43 *
cleveland-14-heart-diseas (10) 80.01 | 55.18 * 83.83 v
hungarian-14-heart-diseas (10) 82.8 | 65.55 * 84.37 v
heart-statlog (10) 79.37 | 55.56 * 84.37 v
hepatitis (10) 83.78 | 63.73 * 83.87
hypothyroid (10) 92.64 | 93.33 v 95.29 v
ionosphere (10) 94.16 | 35.9 * 82.6 *
iris (10) 96.2 | 91.47 * 95.27 *
kr-vs-kp (10) 88.22 | 54.1 * 87.84 *
labor (10) 86.73 | 87.67 93.93 v
lymphography (10) 78.48 | 58.18 * 83.24 v
mushroom (10) 99.85 | 99.77 * 95.77 *
primary-tumor (10) 29 | 24.78 * 49.35 v
segment (10) 77.42 | 75.15 * 80.1 v
sick (10) 65.92 | 93.85 v 92.71 v
sonar (10) 58.02 | 57.17 67.97 v
soybean (10) 86.81 | 86.12 * 92.9 v
splice (10) 88.61 | 41.97 * 95.41 v
vehicle (10) 52.94 | 32.77 * 44.8 *
vote (10) 91.5 | 61.38 * 90.19 *
vowel (10) 57.56 | 36.34 * 62.81 v
waveform (10) 56.33 | 46.11 * 80.02 v
zoo (10) 94.05 | 94.26 95.04 v
------------------------------------
(v| |*) | (9|3|23) (22|5|8)
For more information, see
Demiroz, G. and Guvenir, A. (1997) "Classification by voting feature
intervals", ECML-97.
Valid options are:
-C
Don't Weight voting intervals by confidence.
-B
Set exponential bias towards confident intervals. default = 1.0
- Version:
- $Revision: 1.9 $
- Author:
- Mark Hall (mhall@cs.waikato.ac.nz)
- See Also:
- Serialized Form
Constructor Summary |
VFI()
|
Method Summary |
java.lang.String |
biasTipText()
Returns the tip text for this property |
void |
buildClassifier(Instances instances)
Generates the classifier. |
double[] |
distributionForInstance(Instance instance)
Classifies the given test instance. |
double |
getBias()
Get the value of the bias parameter |
java.lang.String[] |
getOptions()
Gets the current settings of VFI |
boolean |
getWeightByConfidence()
Get whether feature intervals are being weighted by confidence |
java.lang.String |
globalInfo()
Returns a string describing this search method |
java.util.Enumeration |
listOptions()
Returns an enumeration describing the available options. |
static void |
main(java.lang.String[] args)
Main method for testing this class. |
void |
setBias(double b)
Set the value of the exponential bias towards more confident intervals |
void |
setOptions(java.lang.String[] options)
Parses a given list of options. |
void |
setWeightByConfidence(boolean c)
Set weighting by confidence |
java.lang.String |
toString()
Returns a description of this classifier. |
java.lang.String |
weightByConfidenceTipText()
Returns the tip text for this property |
Methods inherited from class java.lang.Object |
equals, getClass, hashCode, notify, notifyAll, wait, wait, wait |
VFI
public VFI()
globalInfo
public java.lang.String globalInfo()
- Returns a string describing this search method
- Returns:
- a description of the search method suitable for
displaying in the explorer/experimenter gui
listOptions
public java.util.Enumeration listOptions()
- Returns an enumeration describing the available options.
- Specified by:
listOptions
in interface OptionHandler
- Overrides:
listOptions
in class Classifier
- Returns:
- an enumeration of all the available options.
setOptions
public void setOptions(java.lang.String[] options)
throws java.lang.Exception
- Parses a given list of options. Valid options are:
-C
Don't weight voting intervals by confidence.
-B
Set exponential bias towards confident intervals. default = 1.0
- Specified by:
setOptions
in interface OptionHandler
- Overrides:
setOptions
in class Classifier
- Parameters:
options
- the list of options as an array of strings
- Throws:
java.lang.Exception
- if an option is not supported
weightByConfidenceTipText
public java.lang.String weightByConfidenceTipText()
- Returns the tip text for this property
- Returns:
- tip text for this property suitable for
displaying in the explorer/experimenter gui
setWeightByConfidence
public void setWeightByConfidence(boolean c)
- Set weighting by confidence
- Parameters:
c
- true if feature intervals are to be weighted by confidence
getWeightByConfidence
public boolean getWeightByConfidence()
- Get whether feature intervals are being weighted by confidence
- Returns:
- true if weighting by confidence is selected
biasTipText
public java.lang.String biasTipText()
- Returns the tip text for this property
- Returns:
- tip text for this property suitable for
displaying in the explorer/experimenter gui
setBias
public void setBias(double b)
- Set the value of the exponential bias towards more confident intervals
- Parameters:
b
- the value of the bias parameter
getBias
public double getBias()
- Get the value of the bias parameter
- Returns:
- the bias parameter
getOptions
public java.lang.String[] getOptions()
- Gets the current settings of VFI
- Specified by:
getOptions
in interface OptionHandler
- Overrides:
getOptions
in class Classifier
- Returns:
- an array of strings suitable for passing to setOptions()
buildClassifier
public void buildClassifier(Instances instances)
throws java.lang.Exception
- Generates the classifier.
- Specified by:
buildClassifier
in class Classifier
- Parameters:
instances
- set of instances serving as training data
- Throws:
java.lang.Exception
- if the classifier has not been generated successfully
toString
public java.lang.String toString()
- Returns a description of this classifier.
- Overrides:
toString
in class java.lang.Object
- Returns:
- a description of this classifier as a string.
distributionForInstance
public double[] distributionForInstance(Instance instance)
throws java.lang.Exception
- Classifies the given test instance.
- Overrides:
distributionForInstance
in class Classifier
- Parameters:
instance
- the instance to be classified
- Returns:
- the predicted class for the instance
- Throws:
java.lang.Exception
- if the instance can't be classified
main
public static void main(java.lang.String[] args)
- Main method for testing this class.
- Parameters:
args
- should contain command line arguments for evaluation
(see Evaluation).
Copyright (c)
2003 David Lindsay, Computer Learning Research Centre, Dept. Computer Science, Royal Holloway, University of London