weka.classifiers.rules
Class DecisionTable.LinkedList

java.lang.Object
  |
  +--weka.core.FastVector
        |
        +--weka.classifiers.rules.DecisionTable.LinkedList
All Implemented Interfaces:
Copyable, java.io.Serializable
Enclosing class:
DecisionTable

public class DecisionTable.LinkedList
extends FastVector

Class for handling a linked list. Used in best first search. Extends the Vector class.

See Also:
Serialized Form

Nested Class Summary
 
Nested classes inherited from class weka.core.FastVector
FastVector.FastVectorEnumeration
 
Constructor Summary
DecisionTable.LinkedList()
           
 
Method Summary
 void addToList(java.util.BitSet gr, double mer)
          Aadds an element (Link) to the list.
 DecisionTable.Link getLinkAt(int index)
          Returns the element (Link) at a specific index from the list.
 void removeLinkAt(int index)
          Removes an element (Link) at a specific index from the list.
 
Methods inherited from class weka.core.FastVector
addElement, appendElements, capacity, contains, copy, copyElements, elementAt, elements, elements, firstElement, indexOf, insertElementAt, lastElement, removeAllElements, removeElementAt, setCapacity, setElementAt, size, swap, toArray, trimToSize
 
Methods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
 

Constructor Detail

DecisionTable.LinkedList

public DecisionTable.LinkedList()
Method Detail

removeLinkAt

public void removeLinkAt(int index)
                  throws java.lang.Exception
Removes an element (Link) at a specific index from the list.

Parameters:
index - the index of the element to be removed.
java.lang.Exception

getLinkAt

public DecisionTable.Link getLinkAt(int index)
                             throws java.lang.Exception
Returns the element (Link) at a specific index from the list.

Parameters:
index - the index of the element to be returned.
java.lang.Exception

addToList

public void addToList(java.util.BitSet gr,
                      double mer)
Aadds an element (Link) to the list.

Parameters:
gr - the feature set specification
mer - the "merit" of this feature set


Copyright (c) 2003 David Lindsay, Computer Learning Research Centre, Dept. Computer Science, Royal Holloway, University of London