weka.classifiers.rules.part
Class C45PruneableDecList

java.lang.Object
  |
  +--weka.classifiers.rules.part.ClassifierDecList
        |
        +--weka.classifiers.rules.part.C45PruneableDecList
All Implemented Interfaces:
java.io.Serializable

public class C45PruneableDecList
extends ClassifierDecList

Class for handling a partial tree structure pruned using C4.5's pruning heuristic.

Version:
$Revision: 1.6 $
Author:
Eibe Frank (eibe@cs.waikato.ac.nz)
See Also:
Serialized Form

Constructor Summary
C45PruneableDecList(ModelSelection toSelectLocModel, double cf, int minNum)
          Constructor for pruneable tree structure.
 
Method Summary
 void buildDecList(Instances data, boolean leaf)
          Builds the partial tree without hold out set.
 double getEstimatedErrorsForLeaf()
          Computes estimated errors for leaf.
 
Methods inherited from class weka.classifiers.rules.part.ClassifierDecList
buildRule, chooseIndex, chooseLastIndex, classifyInstance, cleanup, distributionForInstance, toString, weight
 
Methods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, wait, wait, wait
 

Constructor Detail

C45PruneableDecList

public C45PruneableDecList(ModelSelection toSelectLocModel,
                           double cf,
                           int minNum)
                    throws java.lang.Exception
Constructor for pruneable tree structure. Stores reference to associated training data at each node.

Parameters:
toSelectLocModel - selection method for local splitting model
cf - the confidence factor for pruning
minNum - the minimum number of objects in a leaf
Throws:
java.lang.Exception - if something goes wrong
Method Detail

buildDecList

public void buildDecList(Instances data,
                         boolean leaf)
                  throws java.lang.Exception
Builds the partial tree without hold out set.

Overrides:
buildDecList in class ClassifierDecList
Throws:
java.lang.Exception - if something goes wrong

getEstimatedErrorsForLeaf

public double getEstimatedErrorsForLeaf()
Computes estimated errors for leaf.



Copyright (c) 2003 David Lindsay, Computer Learning Research Centre, Dept. Computer Science, Royal Holloway, University of London