weka.classifiers.trees
Class ADTree

java.lang.Object
  |
  +--weka.classifiers.Classifier
        |
        +--weka.classifiers.trees.ADTree
All Implemented Interfaces:
AdditionalMeasureProducer, java.lang.Cloneable, Drawable, IterativeClassifier, OptionHandler, java.io.Serializable, WeightedInstancesHandler

public class ADTree
extends Classifier
implements OptionHandler, Drawable, AdditionalMeasureProducer, WeightedInstancesHandler, IterativeClassifier

Class for generating an alternating decision tree. The basic algorithm is based on:

Freund, Y., Mason, L.: The alternating decision tree learning algorithm. Proceeding of the Sixteenth International Conference on Machine Learning, Bled, Slovenia, (1999) 124-133.

This version currently only supports two-class problems. The number of boosting iterations needs to be manually tuned to suit the dataset and the desired complexity/accuracy tradeoff. Induction of the trees has been optimized, and heuristic search methods have been introduced to speed learning.

Valid options are:

-B num
Set the number of boosting iterations (default 10)

-E num
Set the nodes to expand: -3(all), -2(weight), -1(z_pure), >=0 seed for random walk (default -3)

-D
Save the instance data with the model

Version:
$Revision: 1.1 $
Author:
Richard Kirkby (rkirkby@cs.waikato.ac.nz), Bernhard Pfahringer (bernhard@cs.waikato.ac.nz)
See Also:
Serialized Form

Field Summary
static int SEARCHPATH_ALL
          The search modes
static int SEARCHPATH_HEAVIEST
           
static int SEARCHPATH_RANDOM
           
static int SEARCHPATH_ZPURE
           
static Tag[] TAGS_SEARCHPATH
           
 
Fields inherited from interface weka.core.Drawable
BayesNet, NOT_DRAWABLE, TREE
 
Constructor Summary
ADTree()
           
 
Method Summary
 void boost()
          Performs a single boosting iteration, using two-class optimized method.
 void buildClassifier(Instances instances)
          Builds a classifier for a set of instances.
 java.lang.Object clone()
          Creates a clone that is identical to the current tree, but is independent.
 double[] distributionForInstance(Instance instance)
          Returns the class probability distribution for an instance.
 void done()
          Frees memory that is no longer needed for a final model - will no longer be able to increment the classifier after calling this.
 java.util.Enumeration enumerateMeasures()
          Returns an enumeration of the additional measure names.
 double getMeasure(java.lang.String additionalMeasureName)
          Returns the value of the named measure.
 int getNumOfBoostingIterations()
          Gets the number of boosting iterations.
 java.lang.String[] getOptions()
          Gets the current settings of ADTree.
 int getRandomSeed()
          Gets random seed for a random walk.
 boolean getSaveInstanceData()
          Gets whether the tree is to save instance data.
 SelectedTag getSearchPath()
          Gets the method of searching the tree for a new insertion.
 java.lang.String globalInfo()
          Returns a string describing classifier
 java.lang.String graph()
          Returns graph describing the tree.
 int graphType()
          Returns the type of graph this classifier represents.
 void initClassifier(Instances instances)
          Sets up the tree ready to be trained, using two-class optimized method.
 java.lang.String legend()
          Returns the legend of the tree, describing how results are to be interpreted.
 java.util.Enumeration listOptions()
          Returns an enumeration describing the available options..
static void main(java.lang.String[] argv)
          Main method for testing this class.
 double measureExamplesProcessed()
          Returns the number of examples "counted".
 double measureNodesExpanded()
          Returns the number of nodes expanded.
 double measureNumLeaves()
          Calls measure function for leaf size - the number of prediction nodes.
 double measureNumPredictionLeaves()
          Calls measure function for prediction leaf size - the number of prediction nodes without children.
 double measureTreeSize()
          Calls measure function for tree size - the total number of nodes.
 void merge(ADTree mergeWith)
          Merges two trees together.
 void next(int iteration)
          Performs one iteration.
 int nextSplitAddedOrder()
          Returns the next number in the order that splitter nodes have been added to the tree, and records that a new splitter has been added.
 java.lang.String numOfBoostingIterationsTipText()
           
 java.lang.String randomSeedTipText()
           
 java.lang.String saveInstanceDataTipText()
           
 java.lang.String searchPathTipText()
           
 void setNumOfBoostingIterations(int b)
          Sets the number of boosting iterations.
 void setOptions(java.lang.String[] options)
          Parses a given list of options.
 void setRandomSeed(int seed)
          Sets random seed for a random walk.
 void setSaveInstanceData(boolean v)
          Sets whether the tree is to save instance data.
 void setSearchPath(SelectedTag newMethod)
          Sets the method of searching the tree for a new insertion.
 java.lang.String toString()
          Returns a description of the classifier.
 
Methods inherited from class weka.classifiers.Classifier
classifyInstance, debugTipText, forName, getDebug, makeCopies, setDebug
 
Methods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, wait, wait, wait
 

Field Detail

SEARCHPATH_ALL

public static final int SEARCHPATH_ALL
The search modes

See Also:
Constant Field Values

SEARCHPATH_HEAVIEST

public static final int SEARCHPATH_HEAVIEST
See Also:
Constant Field Values

SEARCHPATH_ZPURE

public static final int SEARCHPATH_ZPURE
See Also:
Constant Field Values

SEARCHPATH_RANDOM

public static final int SEARCHPATH_RANDOM
See Also:
Constant Field Values

TAGS_SEARCHPATH

public static final Tag[] TAGS_SEARCHPATH
Constructor Detail

ADTree

public ADTree()
Method Detail

globalInfo

public java.lang.String globalInfo()
Returns a string describing classifier

Returns:
a description suitable for displaying in the explorer/experimenter gui

initClassifier

public void initClassifier(Instances instances)
                    throws java.lang.Exception
Sets up the tree ready to be trained, using two-class optimized method.

Specified by:
initClassifier in interface IterativeClassifier
Parameters:
instances - the instances to train the tree with
Throws:
java.lang.Exception - if training data is unsuitable

next

public void next(int iteration)
          throws java.lang.Exception
Performs one iteration.

Specified by:
next in interface IterativeClassifier
Parameters:
iteration - the index of the current iteration (0-based)
Throws:
java.lang.Exception - if this iteration fails

boost

public void boost()
           throws java.lang.Exception
Performs a single boosting iteration, using two-class optimized method. Will add a new splitter node and two prediction nodes to the tree (unless merging takes place).

Throws:
java.lang.Exception - if try to boost without setting up tree first or there are no instances to train with

distributionForInstance

public double[] distributionForInstance(Instance instance)
Returns the class probability distribution for an instance.

Overrides:
distributionForInstance in class Classifier
Parameters:
instance - the instance to be classified
Returns:
the distribution the tree generates for the instance

toString

public java.lang.String toString()
Returns a description of the classifier.

Overrides:
toString in class java.lang.Object
Returns:
a string containing a description of the classifier

graphType

public int graphType()
Returns the type of graph this classifier represents.

Specified by:
graphType in interface Drawable
Returns:
Drawable.TREE

graph

public java.lang.String graph()
                       throws java.lang.Exception
Returns graph describing the tree.

Specified by:
graph in interface Drawable
Returns:
the graph of the tree in dotty format
Throws:
java.lang.Exception - if something goes wrong

legend

public java.lang.String legend()
Returns the legend of the tree, describing how results are to be interpreted.

Returns:
a string containing the legend of the classifier

numOfBoostingIterationsTipText

public java.lang.String numOfBoostingIterationsTipText()
Returns:
tip text for this property suitable for displaying in the explorer/experimenter gui

getNumOfBoostingIterations

public int getNumOfBoostingIterations()
Gets the number of boosting iterations.

Returns:
the number of boosting iterations

setNumOfBoostingIterations

public void setNumOfBoostingIterations(int b)
Sets the number of boosting iterations.

Parameters:
b - the number of boosting iterations to use

searchPathTipText

public java.lang.String searchPathTipText()
Returns:
tip text for this property suitable for displaying in the explorer/experimenter gui

getSearchPath

public SelectedTag getSearchPath()
Gets the method of searching the tree for a new insertion. Will be one of SEARCHPATH_ALL, SEARCHPATH_HEAVIEST, SEARCHPATH_ZPURE, SEARCHPATH_RANDOM.

Returns:
the tree searching mode

setSearchPath

public void setSearchPath(SelectedTag newMethod)
Sets the method of searching the tree for a new insertion. Will be one of SEARCHPATH_ALL, SEARCHPATH_HEAVIEST, SEARCHPATH_ZPURE, SEARCHPATH_RANDOM.

Parameters:
newMethod - the new tree searching mode

randomSeedTipText

public java.lang.String randomSeedTipText()
Returns:
tip text for this property suitable for displaying in the explorer/experimenter gui

getRandomSeed

public int getRandomSeed()
Gets random seed for a random walk.

Returns:
the random seed

setRandomSeed

public void setRandomSeed(int seed)
Sets random seed for a random walk.


saveInstanceDataTipText

public java.lang.String saveInstanceDataTipText()
Returns:
tip text for this property suitable for displaying in the explorer/experimenter gui

getSaveInstanceData

public boolean getSaveInstanceData()
Gets whether the tree is to save instance data.

Returns:
the random seed

setSaveInstanceData

public void setSaveInstanceData(boolean v)
Sets whether the tree is to save instance data.


listOptions

public java.util.Enumeration listOptions()
Returns an enumeration describing the available options..

Specified by:
listOptions in interface OptionHandler
Overrides:
listOptions in class Classifier
Returns:
an enumeration of all the available options.

setOptions

public void setOptions(java.lang.String[] options)
                throws java.lang.Exception
Parses a given list of options. Valid options are:

-B num
Set the number of boosting iterations (default 10)

-E num
Set the nodes to expand: -3(all), -2(weight), -1(z_pure), >=0 seed for random walk (default -3)

-D
Save the instance data with the model

Specified by:
setOptions in interface OptionHandler
Overrides:
setOptions in class Classifier
Parameters:
options - the list of options as an array of strings
Throws:
java.lang.Exception - if an option is not supported

getOptions

public java.lang.String[] getOptions()
Gets the current settings of ADTree.

Specified by:
getOptions in interface OptionHandler
Overrides:
getOptions in class Classifier
Returns:
an array of strings suitable for passing to setOptions()

measureTreeSize

public double measureTreeSize()
Calls measure function for tree size - the total number of nodes.

Returns:
the tree size

measureNumLeaves

public double measureNumLeaves()
Calls measure function for leaf size - the number of prediction nodes.

Returns:
the leaf size

measureNumPredictionLeaves

public double measureNumPredictionLeaves()
Calls measure function for prediction leaf size - the number of prediction nodes without children.

Returns:
the leaf size

measureNodesExpanded

public double measureNodesExpanded()
Returns the number of nodes expanded.

Returns:
the number of nodes expanded during search

measureExamplesProcessed

public double measureExamplesProcessed()
Returns the number of examples "counted".

Returns:
the number of nodes processed during search

enumerateMeasures

public java.util.Enumeration enumerateMeasures()
Returns an enumeration of the additional measure names.

Specified by:
enumerateMeasures in interface AdditionalMeasureProducer
Returns:
an enumeration of the measure names

getMeasure

public double getMeasure(java.lang.String additionalMeasureName)
Returns the value of the named measure.

Specified by:
getMeasure in interface AdditionalMeasureProducer
Parameters:
additionalMeasureName - the name of the measure to query for its value
Returns:
the value of the named measure
Throws:
java.lang.IllegalArgumentException - if the named measure is not supported

nextSplitAddedOrder

public int nextSplitAddedOrder()
Returns the next number in the order that splitter nodes have been added to the tree, and records that a new splitter has been added.

Returns:
the next number in the order

buildClassifier

public void buildClassifier(Instances instances)
                     throws java.lang.Exception
Builds a classifier for a set of instances.

Specified by:
buildClassifier in class Classifier
Parameters:
instances - the instances to train the classifier with
Throws:
java.lang.Exception - if something goes wrong

done

public void done()
Frees memory that is no longer needed for a final model - will no longer be able to increment the classifier after calling this.

Specified by:
done in interface IterativeClassifier

clone

public java.lang.Object clone()
Creates a clone that is identical to the current tree, but is independent. Deep copies the essential elements such as the tree nodes, and the instances (because the weights change.) Reference copies several elements such as the potential splitter sets, assuming that such elements should never differ between clones.

Specified by:
clone in interface IterativeClassifier
Overrides:
clone in class java.lang.Object
Returns:
the clone

merge

public void merge(ADTree mergeWith)
           throws java.lang.Exception
Merges two trees together. Modifies the tree being acted on, leaving tree passed as a parameter untouched (cloned). Does not check to see whether training instances are compatible - strange things could occur if they are not.

Parameters:
mergeWith - the tree to merge with
Throws:
java.lang.Exception - if merge could not be performed

main

public static void main(java.lang.String[] argv)
Main method for testing this class.

Parameters:
argv - the options


Copyright (c) 2003 David Lindsay, Computer Learning Research Centre, Dept. Computer Science, Royal Holloway, University of London