|
|||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | ||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |
java.lang.Object | +--weka.classifiers.trees.j48.ClassifierSplitModel | +--weka.classifiers.trees.j48.BinC45Split
Class implementing a binary C4.5-like split on an attribute.
Constructor Summary | |
BinC45Split(int attIndex,
int minNoObj,
double sumOfWeights)
Initializes the split model. |
Method Summary | |
int |
attIndex()
Returns index of attribute for which split was generated. |
void |
buildClassifier(Instances trainInstances)
Creates a C4.5-type split on the given data. |
double |
classProb(int classIndex,
Instance instance,
int theSubset)
Gets class probability for instance. |
double |
gainRatio()
Returns (C4.5-type) gain ratio for the generated split. |
double |
infoGain()
Returns (C4.5-type) information gain for the generated split. |
java.lang.String |
leftSide(Instances data)
Prints left side of condition.. |
void |
resetDistribution(Instances data)
Sets distribution associated with model. |
java.lang.String |
rightSide(int index,
Instances data)
Prints the condition satisfied by instances in a subset. |
void |
setSplitPoint(Instances allInstances)
Sets split point to greatest value in given data smaller or equal to old split point. |
java.lang.String |
sourceExpression(int index,
Instances data)
Returns a string containing java source code equivalent to the test made at this node. |
double[] |
weights(Instance instance)
Returns weights if instance is assigned to more than one subset. |
int |
whichSubset(Instance instance)
Returns index of subset instance is assigned to. |
Methods inherited from class weka.classifiers.trees.j48.ClassifierSplitModel |
checkModel, classifyInstance, classProbLaplace, clone, codingCost, distribution, dumpLabel, dumpModel, numSubsets, sourceClass, split |
Methods inherited from class java.lang.Object |
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait |
Constructor Detail |
public BinC45Split(int attIndex, int minNoObj, double sumOfWeights)
Method Detail |
public void buildClassifier(Instances trainInstances) throws java.lang.Exception
buildClassifier
in class ClassifierSplitModel
java.lang.Exception
- if something goes wrongpublic final int attIndex()
public final double gainRatio()
public final double classProb(int classIndex, Instance instance, int theSubset) throws java.lang.Exception
classProb
in class ClassifierSplitModel
java.lang.Exception
- if something goes wrongpublic final double infoGain()
public final java.lang.String leftSide(Instances data)
leftSide
in class ClassifierSplitModel
data
- the data.public final java.lang.String rightSide(int index, Instances data)
rightSide
in class ClassifierSplitModel
index
- of subset and training set.public final java.lang.String sourceExpression(int index, Instances data)
sourceExpression
in class ClassifierSplitModel
index
- index of the nominal value testeddata
- the data containing instance structure info
public final void setSplitPoint(Instances allInstances)
public void resetDistribution(Instances data) throws java.lang.Exception
resetDistribution
in class ClassifierSplitModel
java.lang.Exception
public final double[] weights(Instance instance)
weights
in class ClassifierSplitModel
public final int whichSubset(Instance instance) throws java.lang.Exception
whichSubset
in class ClassifierSplitModel
java.lang.Exception
- if something goes wrong
|
|||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | ||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |
Copyright (c) 2003 David Lindsay, Computer Learning Research Centre, Dept. Computer Science, Royal Holloway, University of London