weka.classifiers.trees.lmt
Class LMTNode

java.lang.Object
  |
  +--weka.classifiers.Classifier
        |
        +--weka.classifiers.trees.lmt.LogisticBase
              |
              +--weka.classifiers.trees.lmt.LMTNode
All Implemented Interfaces:
java.lang.Cloneable, OptionHandler, java.io.Serializable, WeightedInstancesHandler

public class LMTNode
extends LogisticBase

Class for logistic model tree structure.

Version:
$Revision: 1.1 $
Author:
Niels Landwehr
See Also:
Serialized Form

Field Summary
 double m_alpha
          Alpha-value (for pruning) at the node
 double m_numIncorrectModel
          Weighted number of training examples currently misclassified by the logistic model at the node
 double m_numIncorrectTree
          Weighted number of training examples currently misclassified by the subtree rooted at the node
 
Constructor Summary
LMTNode(ModelSelection modelSelection, int numBoostingIterations, boolean fastRegression, boolean errorOnProbabilities, int minNumInstances)
          Constructor for logistic model tree node.
 
Method Summary
 int assignIDs(int lastID)
          Assigns unique IDs to all nodes in the tree
 int assignLeafModelNumbers(int leafCounter)
          Assigns numbers to the logistic regression models at the leaves of the tree
 void buildClassifier(Instances data)
          Method for building a logistic model tree (only called for the root node).
 void buildTree(Instances data, SimpleLinearRegression[][] higherRegressions, double totalInstanceWeight)
          Method for building the tree structure.
 void calculateAlphas()
          Updates the alpha field for all nodes.
 void cleanup()
          Cleanup in order to save memory.
 double[] distributionForInstance(Instance instance)
          Returns the class probabilities for an instance given by the logistic model tree.
 java.lang.String getModelParameters()
          Returns a string describing the number of LogitBoost iterations performed at this node, the total number of LogitBoost iterations performed (including iterations at higher levels in the tree), and the number of training examples at this node.
 java.util.Vector getNodes()
          Return a list of all inner nodes in the tree
 void getNodes(java.util.Vector nodeList)
          Fills a list with all inner nodes in the tree
 int getNumInnerNodes()
          Method to count the number of inner nodes in the tree
 int getNumLeaves()
          Returns the number of leaves in the tree.
 java.lang.String graph()
          Returns graph describing the tree.
 boolean hasModels()
          Returns true if the logistic regression model at this node has changed compared to the one at the parent node.
 double[] modelDistributionForInstance(Instance instance)
          Returns the class probabilities for an instance according to the logistic model at the node.
 void modelErrors()
          Updates the numIncorrectModel field for all nodes.
 java.lang.String modelsToString()
          Returns a string describing the logistic regression function at the node.
 int numLeaves()
          Returns the number of leaves (normal count).
 int numNodes()
          Returns the number of nodes.
 void prune(double alpha)
          Prunes a logistic model tree using the CART pruning scheme, given a cost-complexity parameter alpha.
 int prune(double[] alphas, double[] errors, Instances test)
          Method for performing one fold in the cross-validation of the cost-complexity parameter.
 java.lang.String toString()
          Returns a description of the logistic model tree (tree structure and logistic models)
 void treeErrors()
          Updates the numIncorrectTree field for all nodes.
 
Methods inherited from class weka.classifiers.trees.lmt.LogisticBase
getMaxIterations, getNumRegressions, getUsedAttributes, percentAttributesUsed, setHeuristicStop, setMaxIterations
 
Methods inherited from class weka.classifiers.Classifier
classifyInstance, debugTipText, forName, getDebug, getOptions, listOptions, makeCopies, setDebug, setOptions
 
Methods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, wait, wait, wait
 

Field Detail

m_alpha

public double m_alpha
Alpha-value (for pruning) at the node


m_numIncorrectModel

public double m_numIncorrectModel
Weighted number of training examples currently misclassified by the logistic model at the node


m_numIncorrectTree

public double m_numIncorrectTree
Weighted number of training examples currently misclassified by the subtree rooted at the node

Constructor Detail

LMTNode

public LMTNode(ModelSelection modelSelection,
               int numBoostingIterations,
               boolean fastRegression,
               boolean errorOnProbabilities,
               int minNumInstances)
Constructor for logistic model tree node.

Parameters:
modelSelection - selection method for local splitting model
numBoostingIterations - sets the numBoostingIterations parameter
fastRegression - sets the fastRegression parameter
Method Detail

buildClassifier

public void buildClassifier(Instances data)
                     throws java.lang.Exception
Method for building a logistic model tree (only called for the root node). Grows an initial logistic model tree and prunes it back using the CART pruning scheme.

Overrides:
buildClassifier in class LogisticBase
Parameters:
data - the training data
Throws:
java.lang.Exception - if something goes wrong

buildTree

public void buildTree(Instances data,
                      SimpleLinearRegression[][] higherRegressions,
                      double totalInstanceWeight)
               throws java.lang.Exception
Method for building the tree structure. Builds a logistic model, splits the node and recursively builds tree for child nodes.

Parameters:
data - the training data passed on to this node
higherRegressions - An array of regression functions produced by LogitBoost at higher levels in the tree. They represent a logistic regression model that is refined locally at this node.
totalInstanceWeight - the total number of training examples
Throws:
java.lang.Exception - if something goes wrong

prune

public void prune(double alpha)
           throws java.lang.Exception
Prunes a logistic model tree using the CART pruning scheme, given a cost-complexity parameter alpha.

Parameters:
alpha - the cost-complexity measure
java.lang.Exception

prune

public int prune(double[] alphas,
                 double[] errors,
                 Instances test)
          throws java.lang.Exception
Method for performing one fold in the cross-validation of the cost-complexity parameter. Generates a sequence of alpha-values with error estimates for the corresponding (partially pruned) trees, given the test set of that fold.

Parameters:
alphas - array to hold the generated alpha-values
errors - array to hold the corresponding error estimates
test - test set of that fold (to obtain error estimates)
Throws:
if - something goes wrong
java.lang.Exception

getNumInnerNodes

public int getNumInnerNodes()
Method to count the number of inner nodes in the tree

Returns:
the number of inner nodes

getNumLeaves

public int getNumLeaves()
Returns the number of leaves in the tree. Leaves are only counted if their logistic model has changed compared to the one of the parent node.

Returns:
the number of leaves

modelErrors

public void modelErrors()
                 throws java.lang.Exception
Updates the numIncorrectModel field for all nodes. This is needed for calculating the alpha-values.

java.lang.Exception

treeErrors

public void treeErrors()
Updates the numIncorrectTree field for all nodes. This is needed for calculating the alpha-values.


calculateAlphas

public void calculateAlphas()
                     throws java.lang.Exception
Updates the alpha field for all nodes.

java.lang.Exception

getNodes

public java.util.Vector getNodes()
Return a list of all inner nodes in the tree

Returns:
the list of nodes

getNodes

public void getNodes(java.util.Vector nodeList)
Fills a list with all inner nodes in the tree

Parameters:
nodeList - the list to be filled

hasModels

public boolean hasModels()
Returns true if the logistic regression model at this node has changed compared to the one at the parent node.

Returns:
whether it has changed

modelDistributionForInstance

public double[] modelDistributionForInstance(Instance instance)
                                      throws java.lang.Exception
Returns the class probabilities for an instance according to the logistic model at the node.

Parameters:
instance - the instance
Returns:
the array of probabilities
java.lang.Exception

distributionForInstance

public double[] distributionForInstance(Instance instance)
                                 throws java.lang.Exception
Returns the class probabilities for an instance given by the logistic model tree.

Overrides:
distributionForInstance in class LogisticBase
Parameters:
instance - the instance
Returns:
the array of probabilities
Throws:
java.lang.Exception - if distribution can't be computed successfully

numLeaves

public int numLeaves()
Returns the number of leaves (normal count).

Returns:
the number of leaves

numNodes

public int numNodes()
Returns the number of nodes.

Returns:
the number of nodes

toString

public java.lang.String toString()
Returns a description of the logistic model tree (tree structure and logistic models)

Overrides:
toString in class LogisticBase
Returns:
describing string

getModelParameters

public java.lang.String getModelParameters()
Returns a string describing the number of LogitBoost iterations performed at this node, the total number of LogitBoost iterations performed (including iterations at higher levels in the tree), and the number of training examples at this node.

Returns:
the describing string

assignIDs

public int assignIDs(int lastID)
Assigns unique IDs to all nodes in the tree


assignLeafModelNumbers

public int assignLeafModelNumbers(int leafCounter)
Assigns numbers to the logistic regression models at the leaves of the tree


modelsToString

public java.lang.String modelsToString()
Returns a string describing the logistic regression function at the node.


graph

public java.lang.String graph()
                       throws java.lang.Exception
Returns graph describing the tree.

Throws:
java.lang.Exception - if something goes wrong

cleanup

public void cleanup()
Cleanup in order to save memory.

Overrides:
cleanup in class LogisticBase


Copyright (c) 2003 David Lindsay, Computer Learning Research Centre, Dept. Computer Science, Royal Holloway, University of London