weka.clusterers
Class SimpleKMeans

java.lang.Object
  |
  +--weka.clusterers.Clusterer
        |
        +--weka.clusterers.SimpleKMeans
All Implemented Interfaces:
java.lang.Cloneable, OptionHandler, java.io.Serializable, WeightedInstancesHandler

public class SimpleKMeans
extends Clusterer
implements OptionHandler, WeightedInstancesHandler

Simple k means clustering class. Valid options are:

-N
Specify the number of clusters to generate.

-S
Specify random number seed.

Version:
$Revision: 1.13 $
Author:
Mark Hall (mhall@cs.waikato.ac.nz), Eibe Frank (eibe@cs.waikato.ac.nz)
See Also:
Clusterer, OptionHandler, Serialized Form

Constructor Summary
SimpleKMeans()
           
 
Method Summary
 void buildClusterer(Instances data)
          Generates a clusterer.
 int clusterInstance(Instance instance)
          Classifies a given instance.
 int getNumClusters()
          gets the number of clusters to generate
 java.lang.String[] getOptions()
          Gets the current settings of SimpleKMeans
 int getSeed()
          Get the random number seed
 java.lang.String globalInfo()
          Returns a string describing this clusterer
 java.util.Enumeration listOptions()
          Returns an enumeration describing the available options..
static void main(java.lang.String[] argv)
          Main method for testing this class.
 int numberOfClusters()
          Returns the number of clusters.
 java.lang.String numClustersTipText()
          Returns the tip text for this property
 java.lang.String seedTipText()
          Returns the tip text for this property
 void setNumClusters(int n)
          set the number of clusters to generate
 void setOptions(java.lang.String[] options)
          Parses a given list of options.
 void setSeed(int s)
          Set the random number seed
 java.lang.String toString()
          return a string describing this clusterer
 
Methods inherited from class weka.clusterers.Clusterer
distributionForInstance, forName, makeCopies
 
Methods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, wait, wait, wait
 

Constructor Detail

SimpleKMeans

public SimpleKMeans()
Method Detail

globalInfo

public java.lang.String globalInfo()
Returns a string describing this clusterer

Returns:
a description of the evaluator suitable for displaying in the explorer/experimenter gui

buildClusterer

public void buildClusterer(Instances data)
                    throws java.lang.Exception
Generates a clusterer. Has to initialize all fields of the clusterer that are not being set via options.

Specified by:
buildClusterer in class Clusterer
Parameters:
data - set of instances serving as training data
Throws:
java.lang.Exception - if the clusterer has not been generated successfully

clusterInstance

public int clusterInstance(Instance instance)
                    throws java.lang.Exception
Classifies a given instance.

Overrides:
clusterInstance in class Clusterer
Parameters:
instance - the instance to be assigned to a cluster
Returns:
the number of the assigned cluster as an interger if the class is enumerated, otherwise the predicted value
Throws:
java.lang.Exception - if instance could not be classified successfully

numberOfClusters

public int numberOfClusters()
                     throws java.lang.Exception
Returns the number of clusters.

Specified by:
numberOfClusters in class Clusterer
Returns:
the number of clusters generated for a training dataset.
Throws:
java.lang.Exception - if number of clusters could not be returned successfully

listOptions

public java.util.Enumeration listOptions()
Returns an enumeration describing the available options..

Valid options are:

-N
Specify the number of clusters to generate. If omitted, EM will use cross validation to select the number of clusters automatically.

-S
Specify random number seed.

Specified by:
listOptions in interface OptionHandler
Returns:
an enumeration of all the available options.

numClustersTipText

public java.lang.String numClustersTipText()
Returns the tip text for this property

Returns:
tip text for this property suitable for displaying in the explorer/experimenter gui

setNumClusters

public void setNumClusters(int n)
set the number of clusters to generate

Parameters:
n - the number of clusters to generate

getNumClusters

public int getNumClusters()
gets the number of clusters to generate

Returns:
the number of clusters to generate

seedTipText

public java.lang.String seedTipText()
Returns the tip text for this property

Returns:
tip text for this property suitable for displaying in the explorer/experimenter gui

setSeed

public void setSeed(int s)
Set the random number seed

Parameters:
s - the seed

getSeed

public int getSeed()
Get the random number seed

Returns:
the seed

setOptions

public void setOptions(java.lang.String[] options)
                throws java.lang.Exception
Parses a given list of options.

Specified by:
setOptions in interface OptionHandler
Parameters:
options - the list of options as an array of strings
Throws:
java.lang.Exception - if an option is not supported

getOptions

public java.lang.String[] getOptions()
Gets the current settings of SimpleKMeans

Specified by:
getOptions in interface OptionHandler
Returns:
an array of strings suitable for passing to setOptions()

toString

public java.lang.String toString()
return a string describing this clusterer

Overrides:
toString in class java.lang.Object
Returns:
a description of the clusterer as a string

main

public static void main(java.lang.String[] argv)
Main method for testing this class.

Parameters:
argv - should contain the following arguments:

-t training file [-N number of clusters]



Copyright (c) 2003 David Lindsay, Computer Learning Research Centre, Dept. Computer Science, Royal Holloway, University of London