|
|||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | ||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |
java.lang.Object | +--java.util.Random | +--weka.core.RandomVariates
Class implementing some simple random variates generator.
Constructor Summary | |
RandomVariates()
Simply the constructor of super class |
|
RandomVariates(long seed)
Simply the constructor of super class |
Method Summary | |
static void |
main(java.lang.String[] ops)
Main method for testing this class. |
double |
nextErlang(int a)
Generate a value of a variate following standard Erlang distribution. |
double |
nextExponential()
Generate a value of a variate following standard exponential distribution using simple inverse method. |
double |
nextGamma(double a)
Generate a value of a variate following standard Gamma distribution with shape parameter a. |
Methods inherited from class java.util.Random |
nextBoolean, nextBytes, nextDouble, nextFloat, nextGaussian, nextInt, nextInt, nextLong, setSeed |
Methods inherited from class java.lang.Object |
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait |
Constructor Detail |
public RandomVariates()
public RandomVariates(long seed)
seed
- the seed in this random objectMethod Detail |
public double nextExponential()
Variates related to standard Exponential can be generated using simple transformations.
public double nextErlang(int a) throws java.lang.Exception
nextGamma(double a)
instead.
a
- the shape parameter, must be no less than 1
if
- parameter less than 1
java.lang.Exception
public double nextGamma(double a) throws java.lang.Exception
If a>1, it uses a rejection method developed by Minh(1988)"Generating
Gamma Variates", ACM Trans. on Math. Software, Vol.14, No.3, pp261-266.
If a<1, it uses the algorithm "GS" developed by Ahrens and Dieter(1974)
"COMPUTER METHODS FOR SAMPLING FROM GAMMA, BETA, POISSON AND BINOMIAL
DISTRIBUTIONS", COMPUTING, 12 (1974), pp223-246, and further implemented
in Fortran by Ahrens, Kohrt and Dieter(1983) "Algorithm 599: sampling
from Gamma and Poisson distributions", ACM Trans. on Math. Software,
Vol.9 No.2, pp255-257.
Variates related to standard Gamma can be generated using simple transformations.
a
- the shape parameter, must be greater than 1
if
- parameter not greater than 1
java.lang.Exception
public static void main(java.lang.String[] ops)
ops
- # of variates/seed, default is 10/45
|
|||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | ||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |
Copyright (c) 2003 David Lindsay, Computer Learning Research Centre, Dept. Computer Science, Royal Holloway, University of London