|
|||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | ||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |
java.lang.Object | +--weka.core.Instance | +--weka.core.SparseInstance
Class for storing an instance as a sparse vector. A sparse instance only requires storage for those attribute values that are non-zero. Since the objective is to reduce storage requirements for datasets with large numbers of default values, this also includes nominal attributes -- the first nominal value (i.e. that which has index 0) will not require explicit storage, so rearrange your nominal attribute value orderings if necessary. Missing values will be stored explicitly.
Constructor Summary | |
SparseInstance(double weight,
double[] attValues)
Constructor that generates a sparse instance from the given parameters. |
|
SparseInstance(double weight,
double[] attValues,
int[] indices,
int maxNumValues)
Constructor that inititalizes instance variable with given values. |
|
SparseInstance(Instance instance)
Constructor that generates a sparse instance from the given instance. |
|
SparseInstance(int numAttributes)
Constructor of an instance that sets weight to one, all values to be missing, and the reference to the dataset to null. |
|
SparseInstance(SparseInstance instance)
Constructor that copies the info from the given instance. |
Method Summary | |
Attribute |
attributeSparse(int indexOfIndex)
Returns the attribute associated with the internal index. |
java.lang.Object |
copy()
Produces a shallow copy of this instance. |
int |
index(int position)
Returns the index of the attribute stored at the given position. |
boolean |
isMissing(int attIndex)
Tests if a specific value is "missing". |
int |
locateIndex(int index)
Locates the greatest index that is not greater than the given index. |
static void |
main(java.lang.String[] options)
Main method for testing this class. |
Instance |
mergeInstance(Instance inst)
Merges this instance with the given instance and returns the result. |
int |
numAttributes()
Returns the number of attributes. |
int |
numValues()
Returns the number of values in the sparse vector. |
void |
replaceMissingValues(double[] array)
Replaces all missing values in the instance with the values contained in the given array. |
void |
setValue(int attIndex,
double value)
Sets a specific value in the instance to the given value (internal floating-point format). |
void |
setValueSparse(int indexOfIndex,
double value)
Sets a specific value in the instance to the given value (internal floating-point format). |
double[] |
toDoubleArray()
Returns the values of each attribute as an array of doubles. |
java.lang.String |
toString()
Returns the description of one instance in sparse format. |
double |
value(int attIndex)
Returns an instance's attribute value in internal format. |
Methods inherited from class weka.core.Instance |
attribute, classAttribute, classIndex, classIsMissing, classValue, dataset, deleteAttributeAt, enumerateAttributes, equalHeaders, insertAttributeAt, isMissing, isMissingSparse, isMissingValue, missingValue, numClasses, setClassMissing, setClassValue, setClassValue, setDataset, setMissing, setMissing, setValue, setValue, setValue, setWeight, stringValue, stringValue, toString, toString, value, valueSparse, weight |
Methods inherited from class java.lang.Object |
equals, getClass, hashCode, notify, notifyAll, wait, wait, wait |
Constructor Detail |
public SparseInstance(Instance instance)
instance
- the instance from which the attribute values
and the weight are to be copiedpublic SparseInstance(SparseInstance instance)
instance
- the instance from which the attribute
info is to be copiedpublic SparseInstance(double weight, double[] attValues)
weight
- the instance's weightattValues
- a vector of attribute valuespublic SparseInstance(double weight, double[] attValues, int[] indices, int maxNumValues)
weight
- the instance's weightattValues
- a vector of attribute values (just the ones to be stored)indices
- the indices of the given values in the full vectormaxNumValues
- the maximium number of values that can be storedpublic SparseInstance(int numAttributes)
numAttributes
- the size of the instanceMethod Detail |
public Attribute attributeSparse(int indexOfIndex)
attributeSparse
in class Instance
indexOfIndex
- the index of the attribute's index
UnassignedDatasetException
- if instance doesn't have access to a
datasetpublic java.lang.Object copy()
new SparseInstance(instance)
copy
in interface Copyable
copy
in class Instance
public int index(int position)
index
in class Instance
position
- the position
public boolean isMissing(int attIndex)
isMissing
in class Instance
attIndex
- the attribute's indexpublic int locateIndex(int index)
public Instance mergeInstance(Instance inst)
mergeInstance
in class Instance
inst
- the instance to be merged with this one
public int numAttributes()
numAttributes
in class Instance
public int numValues()
numValues
in class Instance
public void replaceMissingValues(double[] array)
replaceMissingValues
in class Instance
array
- containing the means and modes
java.lang.IllegalArgumentException
- if numbers of attributes are unequalpublic void setValue(int attIndex, double value)
setValue
in class Instance
attIndex
- the attribute's indexvalue
- the new attribute value (If the corresponding
attribute is nominal (or a string) then this is the new value's
index as a double).public void setValueSparse(int indexOfIndex, double value)
setValueSparse
in class Instance
indexOfIndex
- the index of the attribute's indexvalue
- the new attribute value (If the corresponding
attribute is nominal (or a string) then this is the new value's
index as a double).public double[] toDoubleArray()
toDoubleArray
in class Instance
public java.lang.String toString()
toString
in class Instance
public double value(int attIndex)
value
in class Instance
attIndex
- the attribute's index
public static void main(java.lang.String[] options)
|
|||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | ||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |
Copyright (c) 2003 David Lindsay, Computer Learning Research Centre, Dept. Computer Science, Royal Holloway, University of London