weka.filters.supervised.instance
Class Resample

java.lang.Object
  |
  +--weka.filters.Filter
        |
        +--weka.filters.supervised.instance.Resample
All Implemented Interfaces:
OptionHandler, java.io.Serializable, SupervisedFilter

public class Resample
extends Filter
implements SupervisedFilter, OptionHandler

Produces a random subsample of a dataset. The original dataset must fit entirely in memory. The number of instances in the generated dataset may be specified. The dataset must have a nominal class attribute. If not, use the unsupervised version. The filter can be made to maintain the class distribution in the subsample, or to bias the class distribution toward a uniform distribution. When used in batch mode, subsequent batches are not resampled. Valid options are:

-S num
Specify the random number seed (default 1).

-B num
Specify a bias towards uniform class distribution. 0 = distribution in input data, 1 = uniform class distribution (default 0).

-Z percent
Specify the size of the output dataset, as a percentage of the input dataset (default 100).

Version:
$Revision: 1.3 $
Author:
Len Trigg (len@reeltwo.com)
See Also:
Serialized Form

Constructor Summary
Resample()
           
 
Method Summary
 boolean batchFinished()
          Signify that this batch of input to the filter is finished.
 java.lang.String biasToUniformClassTipText()
          Returns the tip text for this property
 double getBiasToUniformClass()
          Gets the bias towards a uniform class.
 java.lang.String[] getOptions()
          Gets the current settings of the filter.
 int getRandomSeed()
          Gets the random number seed.
 double getSampleSizePercent()
          Gets the subsample size as a percentage of the original set.
 java.lang.String globalInfo()
          Returns a string describing this filter
 boolean input(Instance instance)
          Input an instance for filtering.
 java.util.Enumeration listOptions()
          Returns an enumeration describing the available options.
static void main(java.lang.String[] argv)
          Main method for testing this class.
 java.lang.String randomSeedTipText()
          Returns the tip text for this property
 java.lang.String sampeSizePercentTipText()
          Returns the tip text for this property
 void setBiasToUniformClass(double newBiasToUniformClass)
          Sets the bias towards a uniform class.
 boolean setInputFormat(Instances instanceInfo)
          Sets the format of the input instances.
 void setOptions(java.lang.String[] options)
          Parses a list of options for this object.
 void setRandomSeed(int newSeed)
          Sets the random number seed.
 void setSampleSizePercent(double newSampleSizePercent)
          Sets the size of the subsample, as a percentage of the original set.
 
Methods inherited from class weka.filters.Filter
batchFilterFile, filterFile, getOutputFormat, inputFormat, isOutputFormatDefined, numPendingOutput, output, outputFormat, outputPeek, useFilter
 
Methods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
 

Constructor Detail

Resample

public Resample()
Method Detail

globalInfo

public java.lang.String globalInfo()
Returns a string describing this filter

Returns:
a description of the filter suitable for displaying in the explorer/experimenter gui

listOptions

public java.util.Enumeration listOptions()
Returns an enumeration describing the available options.

Specified by:
listOptions in interface OptionHandler
Returns:
an enumeration of all the available options.

setOptions

public void setOptions(java.lang.String[] options)
                throws java.lang.Exception
Parses a list of options for this object. Valid options are:

-S num
Specify the random number seed (default 1).

-B num
Specify a bias towards uniform class distribution. 0 = distribution in input data, 1 = uniform class distribution (default 0).

-Z percent
Specify the size of the output dataset, as a percentage of the input dataset (default 100).

Specified by:
setOptions in interface OptionHandler
Parameters:
options - the list of options as an array of strings
Throws:
java.lang.Exception - if an option is not supported

getOptions

public java.lang.String[] getOptions()
Gets the current settings of the filter.

Specified by:
getOptions in interface OptionHandler
Returns:
an array of strings suitable for passing to setOptions

biasToUniformClassTipText

public java.lang.String biasToUniformClassTipText()
Returns the tip text for this property

Returns:
tip text for this property suitable for displaying in the explorer/experimenter gui

getBiasToUniformClass

public double getBiasToUniformClass()
Gets the bias towards a uniform class. A value of 0 leaves the class distribution as-is, a value of 1 ensures the class distributions are uniform in the output data.

Returns:
the current bias

setBiasToUniformClass

public void setBiasToUniformClass(double newBiasToUniformClass)
Sets the bias towards a uniform class. A value of 0 leaves the class distribution as-is, a value of 1 ensures the class distributions are uniform in the output data.

Parameters:
newBiasToUniformClass - the new bias value, between 0 and 1.

randomSeedTipText

public java.lang.String randomSeedTipText()
Returns the tip text for this property

Returns:
tip text for this property suitable for displaying in the explorer/experimenter gui

getRandomSeed

public int getRandomSeed()
Gets the random number seed.

Returns:
the random number seed.

setRandomSeed

public void setRandomSeed(int newSeed)
Sets the random number seed.

Parameters:
newSeed - the new random number seed.

sampeSizePercentTipText

public java.lang.String sampeSizePercentTipText()
Returns the tip text for this property

Returns:
tip text for this property suitable for displaying in the explorer/experimenter gui

getSampleSizePercent

public double getSampleSizePercent()
Gets the subsample size as a percentage of the original set.

Returns:
the subsample size

setSampleSizePercent

public void setSampleSizePercent(double newSampleSizePercent)
Sets the size of the subsample, as a percentage of the original set.

Parameters:
newSampleSizePercent - the subsample set size, between 0 and 100.

setInputFormat

public boolean setInputFormat(Instances instanceInfo)
                       throws java.lang.Exception
Sets the format of the input instances.

Overrides:
setInputFormat in class Filter
Parameters:
instanceInfo - an Instances object containing the input instance structure (any instances contained in the object are ignored - only the structure is required).
Returns:
true if the outputFormat may be collected immediately
Throws:
java.lang.Exception - if the input format can't be set successfully

input

public boolean input(Instance instance)
Input an instance for filtering. Filter requires all training instances be read before producing output.

Overrides:
input in class Filter
Parameters:
instance - the input instance
Returns:
true if the filtered instance may now be collected with output().
Throws:
java.lang.IllegalStateException - if no input structure has been defined

batchFinished

public boolean batchFinished()
Signify that this batch of input to the filter is finished. If the filter requires all instances prior to filtering, output() may now be called to retrieve the filtered instances.

Overrides:
batchFinished in class Filter
Returns:
true if there are instances pending output
Throws:
java.lang.IllegalStateException - if no input structure has been defined

main

public static void main(java.lang.String[] argv)
Main method for testing this class.

Parameters:
argv - should contain arguments to the filter: use -h for help


Copyright (c) 2003 David Lindsay, Computer Learning Research Centre, Dept. Computer Science, Royal Holloway, University of London