|
|||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | ||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |
java.lang.Object | +--weka.filters.Filter | +--weka.filters.unsupervised.instance.Resample
Produces a random subsample of a dataset. The original dataset must fit entirely in memory. The number of instances in the generated dataset may be specified. When used in batch mode, subsequent batches are not resampled. Valid options are:
-S num
Specify the random number seed (default 1).
-Z percent
Specify the size of the output dataset, as a percentage of the input
dataset (default 100).
Constructor Summary | |
Resample()
|
Method Summary | |
boolean |
batchFinished()
Signify that this batch of input to the filter is finished. |
java.lang.String[] |
getOptions()
Gets the current settings of the filter. |
int |
getRandomSeed()
Gets the random number seed. |
double |
getSampleSizePercent()
Gets the subsample size as a percentage of the original set. |
java.lang.String |
globalInfo()
Returns a string describing this classifier |
boolean |
input(Instance instance)
Input an instance for filtering. |
java.util.Enumeration |
listOptions()
Returns an enumeration describing the available options. |
static void |
main(java.lang.String[] argv)
Main method for testing this class. |
java.lang.String |
randomSeedTipText()
Returns the tip text for this property |
java.lang.String |
sampleSizePercentTipText()
Returns the tip text for this property |
boolean |
setInputFormat(Instances instanceInfo)
Sets the format of the input instances. |
void |
setOptions(java.lang.String[] options)
Parses a list of options for this object. |
void |
setRandomSeed(int newSeed)
Sets the random number seed. |
void |
setSampleSizePercent(double newSampleSizePercent)
Sets the size of the subsample, as a percentage of the original set. |
Methods inherited from class weka.filters.Filter |
batchFilterFile, filterFile, getOutputFormat, inputFormat, isOutputFormatDefined, numPendingOutput, output, outputFormat, outputPeek, useFilter |
Methods inherited from class java.lang.Object |
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait |
Constructor Detail |
public Resample()
Method Detail |
public java.lang.String globalInfo()
public java.util.Enumeration listOptions()
listOptions
in interface OptionHandler
public void setOptions(java.lang.String[] options) throws java.lang.Exception
-S num
Specify the random number seed (default 1).
-Z percent
Specify the size of the output dataset, as a percentage of the input
dataset (default 100).
setOptions
in interface OptionHandler
options
- the list of options as an array of strings
java.lang.Exception
- if an option is not supportedpublic java.lang.String[] getOptions()
getOptions
in interface OptionHandler
public java.lang.String randomSeedTipText()
public int getRandomSeed()
public void setRandomSeed(int newSeed)
newSeed
- the new random number seed.public java.lang.String sampleSizePercentTipText()
public double getSampleSizePercent()
public void setSampleSizePercent(double newSampleSizePercent)
newSampleSizePercent
- the subsample set size, between 0 and 100.public boolean setInputFormat(Instances instanceInfo) throws java.lang.Exception
setInputFormat
in class Filter
instanceInfo
- an Instances object containing the input
instance structure (any instances contained in the object are
ignored - only the structure is required).
java.lang.Exception
- if the input format can't be set
successfullypublic boolean input(Instance instance)
input
in class Filter
instance
- the input instance
java.lang.IllegalStateException
- if no input structure has been definedpublic boolean batchFinished()
batchFinished
in class Filter
java.lang.IllegalStateException
- if no input structure has been definedpublic static void main(java.lang.String[] argv)
argv
- should contain arguments to the filter:
use -h for help
|
|||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | ||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |
Copyright (c) 2003 David Lindsay, Computer Learning Research Centre, Dept. Computer Science, Royal Holloway, University of London