Vladimir Vapnik - Selected Bibliography
- V.Vapnik (1995)
- The Nature of Statistical Learning Theory, Springer,
1995
- V.Vapnik (1996)
- Structure of Statistical Learning Theory, Chapter in
the Book: Computational Learning and Probabilistic Reasoning,
ed. A. Gammerman, pp. 33-41, John Wiley and Sons, 1996.
- I. Guyon, J. Makhoul, and V.Vapnik (1998)
- What size test set gives good error rate estimates? IEEE
Pattern Analysis and Machine Intelligence,
Vol. 20, January 1998, 52-64
- A. Gammerman, V. Vovk and V. Vapnik (1998)
- Learning by transduction. In Proceedings of the Fourteenth
Conference on Uncertainty in Artificial Intelligence 1998,
pp.148-156, San Francisco, CA: Morgan Kaufmann.
- B. Scholkopf, P. Simard, A. Smola and V.Vapnik
(1998)
- Prior knowledge in support vector kernels.
In Advances in Neural Information Processing Systems,
Vol.10, MIT Press, 1998.
- V. Vapnik (1998)
- The support vector method of function estimation. In
J. Suykens and J. Vandewalle, ed Nonlinear Modeling:
Advanced Black-Box Techniques, p55-86, Kluwer Academic
Publishers, Boston 1998.
- V. Vapnik (1998)
- Statistical Learning Theory, John Wiley, 1998,
NY, p.732.
- V. Vapnik (1998)
- The support vector method of function estimation
NATO ASI Series, Neural Network and Machine Learning,
C. Bishop (Ed.), Springer, 1998.
- V. Vapnik (1999)
- Three remarks on support vector function estimation.
In Advanced in Kernel methods: Support Vector Learning,
B. Scholkopf, B. Burges and A. Smola (Eds), The MIT Press,
Cambridge, Massachusetts, 1999.
- M. Stitson, A. Gammerman, V. Vapnik, V. Vovk,
C. Watkins and J. Weston (1999)
- Support vector regression with ANOVA decomposition kernels.
In Advanced in Kernel methods: Support Vector Learning,
B. Scholkoph, B. Burges and A. Smola (Eds), The MIT Press,
Cambridge, Massachusetts, 1999.
- J. Weston, A. Gammerman, M. Stitson, V. Vapnik,
V. Vovk and C. Watkins (1999)
- Support vector density estimation. In Advanced in
Kernel methods: Support Vector Learning, B. Scholkoph,
B. Burges and A. Smola (Eds), The MIT Press, Cambridge,
Massachusetts, 1999.
- V. Vapnik (1999)
- An overview of statistical learning theory, IEEE
transactions on Neural Networks 10,
5, 1999, pp. 988-1000.
- H. Drucker, D. Wu, and V. Vapnik (1999)
- Support vector machines for spam categorization. IEEE
transactions on Neural Networks ,10 5, 1999,
pp. 1048-1055.
- O. Chapelle, P. Haffner and V.Vapnik (1999)
- Support vector for histogram-based image classification,
IEEE transactions on Neural Networks 10,
5, 1999, pp.1055-1065.
- V. Cherkassky, X. Shao, F. Mulier, and V. Vapnik (1999)
- Model complexity control for regression using VC generalization
bounds,
IEEE transactions on Neural Networks 10,
5, 1999, pp. 1075-1090.
- P. van Trappen, M. Stitson, R. Wools, S. Barnhill,
V. Vapnik, A. Gammerman and I. Jacobs (2000)
- Preoperative Differentiation of Ovarian Tumors using
Support Vector Machine and Risk Malignancy Index.
In: Proceedings of the International Federation of Obstetrics
and Gynaecology (FIGO) Conference,
Washington, 2000
- Asa Ben-Hur, David Horn, Hava T. Siegelmann,
Vladimir Vapnik (2001)
- Support Vector Clustering,Journal of Machine Learning Research
2: 125-137.
- Olivier Chapelle, Vladimir Vapnik, Yoshua Bengio
- Model Selection for Small Sample Regression. Machine Learning 48 (1-3): 9-23.
- Isabelle Guyon, Jason Weston, Stephen Barnhill, Vladimir Vapnik (2002)
- Gene Selection for Cancer Classification using Support Vector Machines.
Machine Learning 46 (1-3): 389-422.
- Olivier Chapelle, Vladimir Vapnik, Olivier Bousquet, Sayan Mukherjee (2002)
- Choosing Multiple Parameters for Support Vector Machines. Machine Learning 46 (1-3): 131-159.
- Jason Weston, Olivier Chapelle, Andre Elisseeff,
Bernhard Schoelkopf, and Vladimir Vapnik (2003)
- Kernel Dependency Estimation. In Advances in
Neural Information Processing Systems,
ed. by S. Becker, S. Thrun, and K. Obermayer,
15.
- Hans P. Graf, Eric Cosatto, Leon Bottou, Igor Durdanovic,
and Vladimir Vapnik (2005)
- Parallel Support Vector Machines: The Cascade SVM.
In Advances in Neural Information Processing Systems,
ed. by Lawrence Saul, Yair Weiss, and Leon Bottou, 17.
- Vladimir Vapnik (2006)
- Estimation of Dependences Based on Empirical Data.
Springer.
- Jason Weston, Ronan Collobert, Fabian Sinz,
Leon Bottou, and Vladimir Vapnik (2006)
- Inference with the Universum.
In Proceedings of the Twenty-third International Conference
on Machine Learning (ICML 2006).
- I. Nouretdinov, S. G. Costafreda, A. Gammerman,
A. Chervonenkis, V. Vovk, V. Vapnik, and C. H. Y. Fu (2011)
- Machine learning classification with confidence:
Application of transductive conformal predictors
to MRI-based diagnostic and prognostic markers in depression,
NeuroImage, 56, 809-813.
-
Last updated
Mon, 01-Jan-2012 12:57
GMT
•
•
Department of Computer Science,
University of London,
Egham,
Surrey TW20 0EX
Tel/Fax : +44 (0)1784 443421/439786