Vladimir Vapnik - Selected Bibliography
- V.Vapnik (1995) 
- The Nature of Statistical Learning Theory, Springer, 
   1995 
- V.Vapnik (1996)
-  Structure of Statistical Learning Theory, Chapter in 
  the Book: Computational Learning and Probabilistic Reasoning, 
  ed. A. Gammerman, pp. 33-41, John Wiley and Sons, 1996. 
- I. Guyon, J. Makhoul, and V.Vapnik (1998)
-  What size test set gives good error rate estimates? IEEE 
   Pattern Analysis and Machine Intelligence,
   Vol. 20, January 1998, 52-64
- A. Gammerman, V. Vovk and V. Vapnik (1998)
- Learning by transduction. In Proceedings of the Fourteenth 
    Conference on Uncertainty in Artificial Intelligence 1998, 
    pp.148-156, San Francisco, CA: Morgan Kaufmann. 
- B. Scholkopf, P. Simard, A. Smola and V.Vapnik 
      (1998)
-  Prior knowledge in support vector kernels.
  In Advances in Neural Information Processing Systems,
  Vol.10, MIT Press, 1998. 
- V. Vapnik (1998)
-  The support vector method of function estimation. In 
   J. Suykens and J. Vandewalle, ed Nonlinear Modeling: 
   Advanced Black-Box Techniques, p55-86, Kluwer Academic 
   Publishers, Boston 1998. 
- V. Vapnik (1998)
-   Statistical Learning Theory, John Wiley, 1998, 
   NY, p.732. 
- V. Vapnik (1998)
-  The support vector method of function estimation
   NATO ASI Series, Neural Network and Machine Learning, 
  C. Bishop (Ed.), Springer, 1998. 
- V. Vapnik (1999)
-  Three remarks on support vector function estimation.
  In Advanced in Kernel methods: Support Vector Learning, 
  B. Scholkopf, B. Burges and A. Smola (Eds), The MIT Press, 
  Cambridge, Massachusetts, 1999. 
- M. Stitson, A. Gammerman, V. Vapnik, V. Vovk, 
  C. Watkins and J. Weston (1999)
  
-  Support vector regression with ANOVA decomposition kernels.
  In Advanced in Kernel methods: Support Vector Learning, 
  B. Scholkoph, B. Burges and A. Smola (Eds), The MIT Press, 
  Cambridge, Massachusetts, 1999. 
- J. Weston, A. Gammerman, M. Stitson, V. Vapnik, 
  V. Vovk and C. Watkins (1999)
-  Support vector density estimation. In Advanced in 
  Kernel methods: Support Vector Learning, B. Scholkoph, 
  B. Burges and A. Smola (Eds), The MIT Press, Cambridge, 
  Massachusetts, 1999. 
- V. Vapnik (1999)
-  An overview of statistical learning theory, IEEE 
     transactions on Neural Networks 10, 
     5, 1999, pp. 988-1000. 
- H. Drucker, D. Wu, and V. Vapnik (1999)
-  Support vector machines for spam categorization. IEEE 
    transactions on Neural Networks ,10 5, 1999,
    pp. 1048-1055. 
- O. Chapelle, P. Haffner and V.Vapnik (1999)
-  Support vector for histogram-based image classification,
 IEEE transactions on Neural Networks  10,
  5, 1999, pp.1055-1065. 
- V. Cherkassky, X. Shao, F. Mulier, and V. Vapnik (1999)
-  Model complexity control for regression using VC generalization 
     bounds,
   IEEE transactions on Neural Networks 10, 
   5, 1999, pp. 1075-1090. 
- P. van Trappen, M. Stitson, R. Wools, S. Barnhill, 
  V. Vapnik, A. Gammerman and I. Jacobs (2000)
-  Preoperative Differentiation of Ovarian Tumors using 
    Support Vector Machine and Risk Malignancy Index.
    In: Proceedings of the International Federation of Obstetrics 
    and Gynaecology (FIGO) Conference,
    Washington, 2000
- Asa Ben-Hur, David Horn, Hava T. Siegelmann,
  Vladimir Vapnik (2001) 
- Support Vector Clustering,Journal of Machine Learning Research
  2: 125-137.
- Olivier Chapelle, Vladimir Vapnik, Yoshua Bengio
- Model Selection  for Small Sample Regression. Machine Learning 48 (1-3): 9-23.
- Isabelle Guyon, Jason Weston, Stephen Barnhill, Vladimir Vapnik (2002)
- Gene Selection for Cancer Classification using Support Vector Machines.
Machine Learning 46 (1-3): 389-422. 
- Olivier Chapelle, Vladimir Vapnik, Olivier Bousquet, Sayan Mukherjee (2002) 
- Choosing Multiple Parameters for Support Vector Machines. Machine Learning 46 (1-3): 131-159. 
- Jason Weston, Olivier Chapelle, Andre Elisseeff,
  Bernhard Schoelkopf, and Vladimir Vapnik (2003)
- Kernel Dependency Estimation. In Advances in
  Neural Information Processing Systems,
  ed. by S. Becker, S. Thrun, and K. Obermayer,
  15.
- Hans P. Graf, Eric Cosatto, Leon Bottou, Igor Durdanovic,
  and Vladimir Vapnik (2005)
- Parallel Support Vector Machines: The Cascade SVM.
  In Advances in Neural Information Processing Systems,
  ed. by Lawrence Saul, Yair Weiss, and Leon Bottou, 17.
- Vladimir Vapnik (2006)
- Estimation of Dependences Based on Empirical Data.
Springer.
- Jason Weston, Ronan Collobert, Fabian Sinz,
   Leon Bottou, and Vladimir Vapnik (2006)
- Inference with the Universum.
   In Proceedings of the Twenty-third International Conference
   on Machine Learning (ICML 2006).
- I. Nouretdinov, S. G. Costafreda, A. Gammerman,
    A. Chervonenkis, V. Vovk, V. Vapnik, and C. H. Y. Fu (2011)
- Machine learning classification with confidence:
    Application of transductive conformal predictors
    to MRI-based diagnostic and prognostic markers in depression,
    NeuroImage, 56, 809-813.
-   
 
 
 				
 
 
 	
	
Last updated
Mon, 01-Jan-2012  12:57
GMT
 
 
 
•
•
 Department of Computer Science, 
University of London, 
Egham, 
Surrey TW20 0EX
Tel/Fax : +44 (0)1784 443421/439786