|
|||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | ||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |
java.lang.Object | +--weka.attributeSelection.ASEvaluation | +--weka.attributeSelection.SubsetEvaluator | +--weka.attributeSelection.CfsSubsetEval
CFS attribute subset evaluator. For more information see:
Hall, M. A. (1998). Correlation-based Feature Subset Selection for Machine Learning. Thesis submitted in partial fulfilment of the requirements of the degree of Doctor of Philosophy at the University of Waikato.
Valid options are:
-M
Treat missing values as a seperate value.
-L
Include locally predictive attributes.
Constructor Summary | |
CfsSubsetEval()
Constructor |
Method Summary | |
void |
buildEvaluator(Instances data)
Generates a attribute evaluator. |
double |
evaluateSubset(java.util.BitSet subset)
evaluates a subset of attributes |
boolean |
getLocallyPredictive()
Return true if including locally predictive attributes |
boolean |
getMissingSeperate()
Return true is missing is treated as a seperate value |
java.lang.String[] |
getOptions()
Gets the current settings of CfsSubsetEval |
java.lang.String |
globalInfo()
Returns a string describing this attribute evaluator |
java.util.Enumeration |
listOptions()
Returns an enumeration describing the available options. |
java.lang.String |
locallyPredictiveTipText()
Returns the tip text for this property |
static void |
main(java.lang.String[] args)
Main method for testing this class. |
java.lang.String |
missingSeperateTipText()
Returns the tip text for this property |
int[] |
postProcess(int[] attributeSet)
Calls locallyPredictive in order to include locally predictive attributes (if requested). |
void |
setLocallyPredictive(boolean b)
Include locally predictive attributes |
void |
setMissingSeperate(boolean b)
Treat missing as a seperate value |
void |
setOptions(java.lang.String[] options)
Parses and sets a given list of options. |
java.lang.String |
toString()
returns a string describing CFS |
Methods inherited from class weka.attributeSelection.ASEvaluation |
forName, makeCopies |
Methods inherited from class java.lang.Object |
equals, getClass, hashCode, notify, notifyAll, wait, wait, wait |
Constructor Detail |
public CfsSubsetEval()
Method Detail |
public java.lang.String globalInfo()
public java.util.Enumeration listOptions()
listOptions
in interface OptionHandler
public void setOptions(java.lang.String[] options) throws java.lang.Exception
Valid options are:
-M
Treat missing values as a seperate value.
-L
Include locally predictive attributes.
setOptions
in interface OptionHandler
options
- the list of options as an array of strings
java.lang.Exception
- if an option is not supportedpublic java.lang.String locallyPredictiveTipText()
public void setLocallyPredictive(boolean b)
b
- true or falsepublic boolean getLocallyPredictive()
public java.lang.String missingSeperateTipText()
public void setMissingSeperate(boolean b)
b
- true or falsepublic boolean getMissingSeperate()
public java.lang.String[] getOptions()
getOptions
in interface OptionHandler
public void buildEvaluator(Instances data) throws java.lang.Exception
buildEvaluator
in class ASEvaluation
data
- set of instances serving as training data
java.lang.Exception
- if the evaluator has not been
generated successfullypublic double evaluateSubset(java.util.BitSet subset) throws java.lang.Exception
evaluateSubset
in class SubsetEvaluator
subset
- a bitset representing the attribute subset to be
evaluated
java.lang.Exception
- if the subset could not be evaluatedpublic java.lang.String toString()
toString
in class java.lang.Object
public int[] postProcess(int[] attributeSet) throws java.lang.Exception
postProcess
in class ASEvaluation
attributeSet
- the set of attributes found by the search
java.lang.Exception
- if postprocessing fails for some reasonpublic static void main(java.lang.String[] args)
args
- the options
|
|||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | ||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |
Copyright (c) 2003 David Lindsay, Computer Learning Research Centre, Dept. Computer Science, Royal Holloway, University of London