Set the minimum number of objects per bucket (passed on to
OneR, default = 6).
-D
Use the training data to evaluate attributes rather than cross validation.
- Version:
- $Revision: 1.14 $
- Author:
- Mark Hall (mhall@cs.waikato.ac.nz)
- See Also:
- Serialized Form
Method Summary |
void |
buildEvaluator(Instances data)
Initializes a OneRAttribute attribute evaluator. |
double |
evaluateAttribute(int attribute)
evaluates an individual attribute by measuring the amount
of information gained about the class given the attribute. |
java.lang.String |
evalUsingTrainingDataTipText()
Returns a string for this option suitable for display in the gui
as a tip text |
java.lang.String |
foldsTipText()
Returns a string for this option suitable for display in the gui
as a tip text |
boolean |
getEvalUsingTrainingData()
Returns true if the training data is to be used for evaluation |
int |
getFolds()
Get the number of folds used for cross validation |
int |
getMinimumBucketSize()
Get the minimum bucket size used by oneR |
java.lang.String[] |
getOptions()
Gets the current option settings for the OptionHandler. |
int |
getSeed()
Get the random number seed |
java.lang.String |
globalInfo()
Returns a string describing this attribute evaluator |
java.util.Enumeration |
listOptions()
Returns an enumeration describing the available options. |
static void |
main(java.lang.String[] args)
Main method for testing this class. |
java.lang.String |
minimumBucketSizeTipText()
Returns a string for this option suitable for display in the gui
as a tip text |
java.lang.String |
seedTipText()
Returns a string for this option suitable for display in the gui
as a tip text |
void |
setEvalUsingTrainingData(boolean e)
Use the training data to evaluate attributes rather than cross validation |
void |
setFolds(int folds)
Set the number of folds to use for cross validation |
void |
setMinimumBucketSize(int minB)
Set the minumum bucket size used by OneR |
void |
setOptions(java.lang.String[] options)
Parses a given list of options. |
void |
setSeed(int seed)
Set the random number seed for cross validation |
java.lang.String |
toString()
Return a description of the evaluator |
Methods inherited from class java.lang.Object |
equals, getClass, hashCode, notify, notifyAll, wait, wait, wait |
OneRAttributeEval
public OneRAttributeEval()
- Constructor
globalInfo
public java.lang.String globalInfo()
- Returns a string describing this attribute evaluator
- Returns:
- a description of the evaluator suitable for
displaying in the explorer/experimenter gui
seedTipText
public java.lang.String seedTipText()
- Returns a string for this option suitable for display in the gui
as a tip text
- Returns:
- a string describing this option
setSeed
public void setSeed(int seed)
- Set the random number seed for cross validation
- Parameters:
seed
- the seed to use
getSeed
public int getSeed()
- Get the random number seed
- Returns:
- an
int
value
foldsTipText
public java.lang.String foldsTipText()
- Returns a string for this option suitable for display in the gui
as a tip text
- Returns:
- a string describing this option
setFolds
public void setFolds(int folds)
- Set the number of folds to use for cross validation
- Parameters:
folds
- the number of folds
getFolds
public int getFolds()
- Get the number of folds used for cross validation
- Returns:
- the number of folds
evalUsingTrainingDataTipText
public java.lang.String evalUsingTrainingDataTipText()
- Returns a string for this option suitable for display in the gui
as a tip text
- Returns:
- a string describing this option
setEvalUsingTrainingData
public void setEvalUsingTrainingData(boolean e)
- Use the training data to evaluate attributes rather than cross validation
- Parameters:
e
- true if training data is to be used for evaluation
minimumBucketSizeTipText
public java.lang.String minimumBucketSizeTipText()
- Returns a string for this option suitable for display in the gui
as a tip text
- Returns:
- a string describing this option
setMinimumBucketSize
public void setMinimumBucketSize(int minB)
- Set the minumum bucket size used by OneR
- Parameters:
minB
- the minimum bucket size to use
getMinimumBucketSize
public int getMinimumBucketSize()
- Get the minimum bucket size used by oneR
- Returns:
- the minimum bucket size used
getEvalUsingTrainingData
public boolean getEvalUsingTrainingData()
- Returns true if the training data is to be used for evaluation
- Returns:
- true if training data is to be used for evaluation
listOptions
public java.util.Enumeration listOptions()
- Returns an enumeration describing the available options.
- Specified by:
listOptions
in interface OptionHandler
- Returns:
- an enumeration of all the available options.
setOptions
public void setOptions(java.lang.String[] options)
throws java.lang.Exception
- Parses a given list of options. Valid options are:
-S
Set the seed for cross validation (default = 1).
-F
Set the number of folds for cross validation (default = 10).
-B
Set the minimum number of objects per bucket (passed on to
OneR, default = 6).
-D
Use the training data to evaluate attributes rather than cross validation.
- Specified by:
setOptions
in interface OptionHandler
- Parameters:
options
- the list of options as an array of strings
- Throws:
java.lang.Exception
- if an option is not supported
getOptions
public java.lang.String[] getOptions()
- Description copied from interface:
OptionHandler
- Gets the current option settings for the OptionHandler.
- Specified by:
getOptions
in interface OptionHandler
- Returns:
- the list of current option settings as an array of strings
buildEvaluator
public void buildEvaluator(Instances data)
throws java.lang.Exception
- Initializes a OneRAttribute attribute evaluator.
Discretizes all attributes that are numeric.
- Specified by:
buildEvaluator
in class ASEvaluation
- Parameters:
data
- set of instances serving as training data
- Throws:
java.lang.Exception
- if the evaluator has not been
generated successfully
evaluateAttribute
public double evaluateAttribute(int attribute)
throws java.lang.Exception
- evaluates an individual attribute by measuring the amount
of information gained about the class given the attribute.
- Specified by:
evaluateAttribute
in class AttributeEvaluator
- Parameters:
attribute
- the index of the attribute to be evaluated
- Returns:
- the "merit" of the attribute
- Throws:
java.lang.Exception
- if the attribute could not be evaluated
toString
public java.lang.String toString()
- Return a description of the evaluator
- Overrides:
toString
in class java.lang.Object
- Returns:
- description as a string
main
public static void main(java.lang.String[] args)
- Main method for testing this class.
- Parameters:
args
- the options
Copyright (c)
2003 David Lindsay, Computer Learning Research Centre, Dept. Computer Science, Royal Holloway, University of London