weka.classifiers.bayes
Class NaiveBayes

java.lang.Object
  |
  +--weka.classifiers.Classifier
        |
        +--weka.classifiers.bayes.NaiveBayes
All Implemented Interfaces:
java.lang.Cloneable, OptionHandler, java.io.Serializable, WeightedInstancesHandler
Direct Known Subclasses:
NaiveBayesUpdateable

public class NaiveBayes
extends Classifier
implements OptionHandler, WeightedInstancesHandler

Class for a Naive Bayes classifier using estimator classes. Numeric estimator precision values are chosen based on analysis of the training data. For this reason, the classifier is not an UpdateableClassifier (which in typical usage are initialized with zero training instances) -- if you need the UpdateableClassifier functionality, use the NaiveBayesUpdateable classifier. The NaiveBayesUpdateable classifier will use a default precision of 0.1 for numeric attributes when buildClassifier is called with zero training instances.

For more information on Naive Bayes classifiers, see

George H. John and Pat Langley (1995). Estimating Continuous Distributions in Bayesian Classifiers. Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence. pp. 338-345. Morgan Kaufmann, San Mateo.

Valid options are:

-K
Use kernel estimation for modelling numeric attributes rather than a single normal distribution.

-D
Use supervised discretization to process numeric attributes.

Version:
$Revision: 1.15 $
Author:
Len Trigg (trigg@cs.waikato.ac.nz), Eibe Frank (eibe@cs.waikato.ac.nz)
See Also:
Serialized Form

Constructor Summary
NaiveBayes()
           
 
Method Summary
 void buildClassifier(Instances instances)
          Generates the classifier.
 double[] distributionForInstance(Instance instance)
          Calculates the class membership probabilities for the given test instance.
 java.lang.String[] getOptions()
          Gets the current settings of the classifier.
 boolean getUseKernelEstimator()
          Gets if kernel estimator is being used.
 boolean getUseSupervisedDiscretization()
          Get whether supervised discretization is to be used.
 java.lang.String globalInfo()
          Returns a string describing this classifier
 java.util.Enumeration listOptions()
          Returns an enumeration describing the available options.
static void main(java.lang.String[] argv)
          Main method for testing this class.
 void setOptions(java.lang.String[] options)
          Parses a given list of options.
 void setUseKernelEstimator(boolean v)
          Sets if kernel estimator is to be used.
 void setUseSupervisedDiscretization(boolean newblah)
          Set whether supervised discretization is to be used.
 java.lang.String toString()
          Returns a description of the classifier.
 void updateClassifier(Instance instance)
          Updates the classifier with the given instance.
 java.lang.String useKernelEstimatorTipText()
          Returns the tip text for this property
 java.lang.String useSupervisedDiscretizationTipText()
          Returns the tip text for this property
 
Methods inherited from class weka.classifiers.Classifier
classifyInstance, debugTipText, forName, getDebug, makeCopies, setDebug
 
Methods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, wait, wait, wait
 

Constructor Detail

NaiveBayes

public NaiveBayes()
Method Detail

globalInfo

public java.lang.String globalInfo()
Returns a string describing this classifier

Returns:
a description of the classifier suitable for displaying in the explorer/experimenter gui

buildClassifier

public void buildClassifier(Instances instances)
                     throws java.lang.Exception
Generates the classifier.

Specified by:
buildClassifier in class Classifier
Parameters:
instances - set of instances serving as training data
Throws:
java.lang.Exception - if the classifier has not been generated successfully

updateClassifier

public void updateClassifier(Instance instance)
                      throws java.lang.Exception
Updates the classifier with the given instance.

Parameters:
instance - the new training instance to include in the model
Throws:
java.lang.Exception - if the instance could not be incorporated in the model.

distributionForInstance

public double[] distributionForInstance(Instance instance)
                                 throws java.lang.Exception
Calculates the class membership probabilities for the given test instance.

Overrides:
distributionForInstance in class Classifier
Parameters:
instance - the instance to be classified
Returns:
predicted class probability distribution
Throws:
java.lang.Exception - if there is a problem generating the prediction

listOptions

public java.util.Enumeration listOptions()
Returns an enumeration describing the available options.

Specified by:
listOptions in interface OptionHandler
Overrides:
listOptions in class Classifier
Returns:
an enumeration of all the available options.

setOptions

public void setOptions(java.lang.String[] options)
                throws java.lang.Exception
Parses a given list of options. Valid options are:

-K
Use kernel estimation for modelling numeric attributes rather than a single normal distribution.

-D
Use supervised discretization to process numeric attributes.

Specified by:
setOptions in interface OptionHandler
Overrides:
setOptions in class Classifier
Parameters:
options - the list of options as an array of strings
Throws:
java.lang.Exception - if an option is not supported

getOptions

public java.lang.String[] getOptions()
Gets the current settings of the classifier.

Specified by:
getOptions in interface OptionHandler
Overrides:
getOptions in class Classifier
Returns:
an array of strings suitable for passing to setOptions

toString

public java.lang.String toString()
Returns a description of the classifier.

Overrides:
toString in class java.lang.Object
Returns:
a description of the classifier as a string.

useKernelEstimatorTipText

public java.lang.String useKernelEstimatorTipText()
Returns the tip text for this property

Returns:
tip text for this property suitable for displaying in the explorer/experimenter gui

getUseKernelEstimator

public boolean getUseKernelEstimator()
Gets if kernel estimator is being used.

Returns:
Value of m_UseKernelEstimatory.

setUseKernelEstimator

public void setUseKernelEstimator(boolean v)
Sets if kernel estimator is to be used.

Parameters:
v - Value to assign to m_UseKernelEstimatory.

useSupervisedDiscretizationTipText

public java.lang.String useSupervisedDiscretizationTipText()
Returns the tip text for this property

Returns:
tip text for this property suitable for displaying in the explorer/experimenter gui

getUseSupervisedDiscretization

public boolean getUseSupervisedDiscretization()
Get whether supervised discretization is to be used.

Returns:
true if supervised discretization is to be used.

setUseSupervisedDiscretization

public void setUseSupervisedDiscretization(boolean newblah)
Set whether supervised discretization is to be used.

Parameters:
newblah - true if supervised discretization is to be used.

main

public static void main(java.lang.String[] argv)
Main method for testing this class.

Parameters:
argv - the options


Copyright (c) 2003 David Lindsay, Computer Learning Research Centre, Dept. Computer Science, Royal Holloway, University of London