weka.classifiers.bayes
Class NaiveBayesMultinomial

java.lang.Object
  |
  +--weka.classifiers.Classifier
        |
        +--weka.classifiers.bayes.NaiveBayesMultinomial
All Implemented Interfaces:
java.lang.Cloneable, OptionHandler, java.io.Serializable, WeightedInstancesHandler

public class NaiveBayesMultinomial
extends Classifier
implements WeightedInstancesHandler

The core equation for this classifier: P[Ci|D] = (P[D|Ci] x P[Ci]) / P[D] (Bayes rule) where Ci is class i and D is a document

See Also:
Serialized Form

Constructor Summary
NaiveBayesMultinomial()
           
 
Method Summary
 void buildClassifier(Instances instances)
          Generates the classifier.
 double[] distributionForInstance(Instance instance)
          Calculates the class membership probabilities for the given test instance.
 java.lang.String globalInfo()
          Returns a string describing this classifier
 double lnFactorial(int n)
          Fast computation of ln(n!) for non-negative ints negative ints are passed on to the general gamma-function based version in weka.core.SpecialFunctions if the current n value is higher than any previous one, the cache is extended and filled to cover it the common case is reduced to a simple array lookup
static void main(java.lang.String[] argv)
          Main method for testing this class.
 java.lang.String toString()
           
 
Methods inherited from class weka.classifiers.Classifier
classifyInstance, debugTipText, forName, getDebug, getOptions, listOptions, makeCopies, setDebug, setOptions
 
Methods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, wait, wait, wait
 

Constructor Detail

NaiveBayesMultinomial

public NaiveBayesMultinomial()
Method Detail

globalInfo

public java.lang.String globalInfo()
Returns a string describing this classifier

Returns:
a description of the classifier suitable for displaying in the explorer/experimenter gui

buildClassifier

public void buildClassifier(Instances instances)
                     throws java.lang.Exception
Generates the classifier.

Specified by:
buildClassifier in class Classifier
Parameters:
instances - set of instances serving as training data
Throws:
java.lang.Exception - if the classifier has not been generated successfully

distributionForInstance

public double[] distributionForInstance(Instance instance)
                                 throws java.lang.Exception
Calculates the class membership probabilities for the given test instance.

Overrides:
distributionForInstance in class Classifier
Parameters:
instance - the instance to be classified
Returns:
predicted class probability distribution
Throws:
java.lang.Exception - if there is a problem generating the prediction

lnFactorial

public double lnFactorial(int n)
Fast computation of ln(n!) for non-negative ints negative ints are passed on to the general gamma-function based version in weka.core.SpecialFunctions if the current n value is higher than any previous one, the cache is extended and filled to cover it the common case is reduced to a simple array lookup

Parameters:
n - the integer
Returns:
ln(n!)

toString

public java.lang.String toString()
Overrides:
toString in class java.lang.Object

main

public static void main(java.lang.String[] argv)
Main method for testing this class.

Parameters:
argv - the options


Copyright (c) 2003 David Lindsay, Computer Learning Research Centre, Dept. Computer Science, Royal Holloway, University of London