weka.classifiers.bayes
Class NaiveBayesSimple

java.lang.Object
  |
  +--weka.classifiers.Classifier
        |
        +--weka.classifiers.bayes.NaiveBayesSimple
All Implemented Interfaces:
java.lang.Cloneable, OptionHandler, java.io.Serializable

public class NaiveBayesSimple
extends Classifier

Class for building and using a simple Naive Bayes classifier. Numeric attributes are modelled by a normal distribution. For more information, see

Richard Duda and Peter Hart (1973).Pattern Classification and Scene Analysis. Wiley, New York.

Version:
$Revision: 1.12 $
Author:
Eibe Frank (eibe@cs.waikato.ac.nz)
See Also:
Serialized Form

Constructor Summary
NaiveBayesSimple()
           
 
Method Summary
 void buildClassifier(Instances instances)
          Generates the classifier.
 double[] distributionForInstance(Instance instance)
          Calculates the class membership probabilities for the given test instance.
 java.lang.String globalInfo()
          Returns a string describing this classifier
static void main(java.lang.String[] argv)
          Main method for testing this class.
 java.lang.String toString()
          Returns a description of the classifier.
 
Methods inherited from class weka.classifiers.Classifier
classifyInstance, debugTipText, forName, getDebug, getOptions, listOptions, makeCopies, setDebug, setOptions
 
Methods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, wait, wait, wait
 

Constructor Detail

NaiveBayesSimple

public NaiveBayesSimple()
Method Detail

globalInfo

public java.lang.String globalInfo()
Returns a string describing this classifier

Returns:
a description of the classifier suitable for displaying in the explorer/experimenter gui

buildClassifier

public void buildClassifier(Instances instances)
                     throws java.lang.Exception
Generates the classifier.

Specified by:
buildClassifier in class Classifier
Parameters:
instances - set of instances serving as training data
Throws:
java.lang.Exception - if the classifier has not been generated successfully

distributionForInstance

public double[] distributionForInstance(Instance instance)
                                 throws java.lang.Exception
Calculates the class membership probabilities for the given test instance.

Overrides:
distributionForInstance in class Classifier
Parameters:
instance - the instance to be classified
Returns:
predicted class probability distribution
Throws:
java.lang.Exception - if distribution can't be computed

toString

public java.lang.String toString()
Returns a description of the classifier.

Overrides:
toString in class java.lang.Object
Returns:
a description of the classifier as a string.

main

public static void main(java.lang.String[] argv)
Main method for testing this class.

Parameters:
argv - the options


Copyright (c) 2003 David Lindsay, Computer Learning Research Centre, Dept. Computer Science, Royal Holloway, University of London