|
|||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | ||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |
java.lang.Object | +--weka.classifiers.functions.pace.MixtureDistribution
Abtract class for manipulating mixture distributions.
REFERENCES
Wang, Y. (2000). "A new approach to fitting linear models in high dimensional spaces." PhD Thesis. Department of Computer Science, University of Waikato, New Zealand.
Wang, Y. and Witten, I. H. (2002). "Modeling for optimal probability prediction." Proceedings of ICML'2002. Sydney.
Field Summary | |
static int |
NNMMethod
The nonnegative-measure-based method |
static int |
PMMethod
The probability-measure-based method |
Constructor Summary | |
MixtureDistribution()
|
Method Summary | |
PaceMatrix |
empiricalProbability(DoubleVector data,
PaceMatrix intervals)
Computes the empirical probabilities of the data over a set of intervals. |
void |
fit(DoubleVector data)
Fits the mixture (or mixing) distribution to the data. |
void |
fit(DoubleVector data,
int method)
Fits the mixture (or mixing) distribution to the data. |
DiscreteFunction |
fitForSingleCluster(DoubleVector data,
int method)
Fits the mixture (or mixing) distribution to the data. |
abstract PaceMatrix |
fittingIntervals(DoubleVector data)
Contructs the set of fitting intervals for mixture estimation. |
DiscreteFunction |
getMixingDistribution()
Gets the mixing distribution |
abstract PaceMatrix |
probabilityMatrix(DoubleVector s,
PaceMatrix intervals)
Contructs the probability matrix for mixture estimation, given a set of support points and a set of intervals. |
abstract boolean |
separable(DoubleVector data,
int i0,
int i1,
double x)
Return true if a value can be considered for mixture estimatino separately from the data indexed between i0 and i1 |
void |
setMixingDistribution(DiscreteFunction d)
Sets the mixing distribution |
abstract DoubleVector |
supportPoints(DoubleVector data,
int ne)
Contructs the set of support points for mixture estimation. |
java.lang.String |
toString()
Converts to a string |
Methods inherited from class java.lang.Object |
equals, getClass, hashCode, notify, notifyAll, wait, wait, wait |
Field Detail |
public static final int NNMMethod
public static final int PMMethod
Constructor Detail |
public MixtureDistribution()
Method Detail |
public DiscreteFunction getMixingDistribution()
public void setMixingDistribution(DiscreteFunction d)
d
- the mixing distributionpublic void fit(DoubleVector data)
data
- the data, supposedly generated from the mixture modelpublic void fit(DoubleVector data, int method)
data
- the data supposedly generated from the mixturemethod
- the method to be used. Refer to the static final
variables of this class.public DiscreteFunction fitForSingleCluster(DoubleVector data, int method)
data
- the data supposedly generated from the mixturemethod
- the method to be used. Refer to the static final
variables of this class.public abstract boolean separable(DoubleVector data, int i0, int i1, double x)
data
- the data supposedly generated from the mixturei0
- the index of the first element in the groupi1
- the index of the last element in the groupx
- the valuepublic abstract DoubleVector supportPoints(DoubleVector data, int ne)
data
- the data supposedly generated from the mixturene
- the number of extra data that are suppposedly discarded
earlier and not passed into herepublic abstract PaceMatrix fittingIntervals(DoubleVector data)
data
- the data supposedly generated from the mixturepublic abstract PaceMatrix probabilityMatrix(DoubleVector s, PaceMatrix intervals)
s
- the set of support pointsintervals
- the intervalspublic PaceMatrix empiricalProbability(DoubleVector data, PaceMatrix intervals)
data
- the dataintervals
- the intervalspublic java.lang.String toString()
toString
in class java.lang.Object
|
|||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | ||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |
Copyright (c) 2003 David Lindsay, Computer Learning Research Centre, Dept. Computer Science, Royal Holloway, University of London