|
|||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | ||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |
java.lang.Object | +--weka.classifiers.functions.pace.MixtureDistribution | +--weka.classifiers.functions.pace.NormalMixture
Class for manipulating normal mixture distributions.
REFERENCES
Wang, Y. (2000). "A new approach to fitting linear models in high dimensional spaces." PhD Thesis. Department of Computer Science, University of Waikato, New Zealand.
Wang, Y. and Witten, I. H. (2002). "Modeling for optimal probability prediction." Proceedings of ICML'2002. Sydney.
Field Summary |
Fields inherited from class weka.classifiers.functions.pace.MixtureDistribution |
NNMMethod, PMMethod |
Constructor Summary | |
NormalMixture()
Contructs an empty NormalMixture |
Method Summary | |
double |
empiricalBayesEstimate(double x)
Returns the empirical Bayes estimate of a single value. |
DoubleVector |
empiricalBayesEstimate(DoubleVector x)
Returns the empirical Bayes estimate of a vector. |
double |
f(double x)
Computes the value of f(x) given the mixture. |
DoubleVector |
f(DoubleVector x)
Computes the value of f(x) given the mixture, where x is a vector. |
PaceMatrix |
fittingIntervals(DoubleVector data)
Contructs the set of fitting intervals for mixture estimation. |
double |
getSeparatingThreshold()
Gets the separating threshold value. |
double |
getTrimingThreshold()
Gets the triming thresholding value. |
double |
h(double x)
Computes the value of h(x) given the mixture. |
DoubleVector |
h(DoubleVector x)
Computes the value of h(x) given the mixture, where x is a vector. |
double |
hf(double x)
Computes the value of h(x) / f(x) given the mixture. |
static void |
main(java.lang.String[] args)
Method to test this class |
DoubleVector |
nestedEstimate(DoubleVector x)
Returns the optimal nested model estimate of a vector. |
PaceMatrix |
probabilityMatrix(DoubleVector s,
PaceMatrix intervals)
Contructs the probability matrix for mixture estimation, given a set of support points and a set of intervals. |
boolean |
separable(DoubleVector data,
int i0,
int i1,
double x)
Return true if a value can be considered for mixture estimatino separately from the data indexed between i0 and i1 |
void |
setSeparatingThreshold(double t)
Sets the separating threshold value |
void |
setTrimingThreshold(double t)
Sets the triming thresholding value. |
DoubleVector |
subsetEstimate(DoubleVector x)
Returns the estimate of optimal subset selection. |
DoubleVector |
supportPoints(DoubleVector data,
int ne)
Contructs the set of support points for mixture estimation. |
java.lang.String |
toString()
Converts to a string |
void |
trim(DoubleVector x)
Trims the small values of the estaimte |
Methods inherited from class weka.classifiers.functions.pace.MixtureDistribution |
empiricalProbability, fit, fit, fitForSingleCluster, getMixingDistribution, setMixingDistribution |
Methods inherited from class java.lang.Object |
equals, getClass, hashCode, notify, notifyAll, wait, wait, wait |
Constructor Detail |
public NormalMixture()
Method Detail |
public double getSeparatingThreshold()
public void setSeparatingThreshold(double t)
t
- the threshold valuepublic double getTrimingThreshold()
public void setTrimingThreshold(double t)
public boolean separable(DoubleVector data, int i0, int i1, double x)
separable
in class MixtureDistribution
data
- the data supposedly generated from the mixturei0
- the index of the first element in the groupi1
- the index of the last element in the groupx
- the valuepublic DoubleVector supportPoints(DoubleVector data, int ne)
supportPoints
in class MixtureDistribution
data
- the data supposedly generated from the mixturene
- the number of extra data that are suppposedly discarded
earlier and not passed into herepublic PaceMatrix fittingIntervals(DoubleVector data)
fittingIntervals
in class MixtureDistribution
data
- the data supposedly generated from the mixturepublic PaceMatrix probabilityMatrix(DoubleVector s, PaceMatrix intervals)
probabilityMatrix
in class MixtureDistribution
s
- the set of support pointsintervals
- the intervalspublic double empiricalBayesEstimate(double x)
x
- the valuepublic DoubleVector empiricalBayesEstimate(DoubleVector x)
x
- the vectorpublic DoubleVector nestedEstimate(DoubleVector x)
x
- the vectorpublic DoubleVector subsetEstimate(DoubleVector x)
x
- the vectorpublic void trim(DoubleVector x)
x
- the estimate vectorpublic double hf(double x)
x
- the valuepublic double h(double x)
x
- the valuepublic DoubleVector h(DoubleVector x)
x
- the vectorpublic double f(double x)
x
- the valuepublic DoubleVector f(DoubleVector x)
x
- the vectorpublic java.lang.String toString()
toString
in class MixtureDistribution
public static void main(java.lang.String[] args)
|
|||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | ||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |
Copyright (c) 2003 David Lindsay, Computer Learning Research Centre, Dept. Computer Science, Royal Holloway, University of London