|
|||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | ||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |
java.lang.Object | +--weka.classifiers.Classifier | +--weka.classifiers.SingleClassifierEnhancer | +--weka.classifiers.IteratedSingleClassifierEnhancer | +--weka.classifiers.RandomizableIteratedSingleClassifierEnhancer | +--weka.classifiers.meta.AdaBoostM1
Class for boosting a classifier using Freund & Schapire's Adaboost M1 method. For more information, see
Yoav Freund and Robert E. Schapire (1996). Experiments with a new boosting algorithm. Proc International Conference on Machine Learning, pages 148-156, Morgan Kaufmann, San Francisco.
Valid options are:
-D
Turn on debugging output.
-W classname
Specify the full class name of a classifier as the basis for
boosting (required).
-I num
Set the number of boost iterations (default 10).
-P num
Set the percentage of weight mass used to build classifiers
(default 100).
-Q
Use resampling instead of reweighting.
-S seed
Random number seed for resampling (default 1).
Options after -- are passed to the designated classifier.
Constructor Summary | |
AdaBoostM1()
Constructor. |
Method Summary | |
void |
buildClassifier(Instances data)
Boosting method. |
double[] |
distributionForInstance(Instance instance)
Calculates the class membership probabilities for the given test instance. |
java.lang.String[] |
getOptions()
Gets the current settings of the Classifier. |
boolean |
getUseResampling()
Get whether resampling is turned on |
int |
getWeightThreshold()
Get the degree of weight thresholding |
java.lang.String |
globalInfo()
Returns a string describing classifier |
java.util.Enumeration |
listOptions()
Returns an enumeration describing the available options. |
static void |
main(java.lang.String[] argv)
Main method for testing this class. |
void |
setOptions(java.lang.String[] options)
Parses a given list of options. |
void |
setUseResampling(boolean r)
Set resampling mode |
void |
setWeightThreshold(int threshold)
Set weight threshold |
java.lang.String |
toSource(java.lang.String className)
Returns the boosted model as Java source code. |
java.lang.String |
toString()
Returns description of the boosted classifier. |
java.lang.String |
useResamplingTipText()
Returns the tip text for this property |
java.lang.String |
weightThresholdTipText()
Returns the tip text for this property |
Methods inherited from class weka.classifiers.RandomizableIteratedSingleClassifierEnhancer |
getSeed, seedTipText, setSeed |
Methods inherited from class weka.classifiers.IteratedSingleClassifierEnhancer |
getNumIterations, numIterationsTipText, setNumIterations |
Methods inherited from class weka.classifiers.SingleClassifierEnhancer |
classifierTipText, getClassifier, setClassifier |
Methods inherited from class weka.classifiers.Classifier |
classifyInstance, debugTipText, forName, getDebug, makeCopies, setDebug |
Methods inherited from class java.lang.Object |
equals, getClass, hashCode, notify, notifyAll, wait, wait, wait |
Constructor Detail |
public AdaBoostM1()
Method Detail |
public java.lang.String globalInfo()
public java.util.Enumeration listOptions()
listOptions
in interface OptionHandler
listOptions
in class RandomizableIteratedSingleClassifierEnhancer
public void setOptions(java.lang.String[] options) throws java.lang.Exception
-D
Turn on debugging output.
-W classname
Specify the full class name of a classifier as the basis for
boosting (required).
-I num
Set the number of boost iterations (default 10).
-P num
Set the percentage of weight mass used to build classifiers
(default 100).
-Q
Use resampling instead of reweighting.
-S seed
Random number seed for resampling (default 1).
Options after -- are passed to the designated classifier.
setOptions
in interface OptionHandler
setOptions
in class RandomizableIteratedSingleClassifierEnhancer
options
- the list of options as an array of strings
java.lang.Exception
- if an option is not supportedpublic java.lang.String[] getOptions()
getOptions
in interface OptionHandler
getOptions
in class RandomizableIteratedSingleClassifierEnhancer
public java.lang.String weightThresholdTipText()
public void setWeightThreshold(int threshold)
public int getWeightThreshold()
public java.lang.String useResamplingTipText()
public void setUseResampling(boolean r)
public boolean getUseResampling()
public void buildClassifier(Instances data) throws java.lang.Exception
buildClassifier
in class IteratedSingleClassifierEnhancer
data
- the training data to be used for generating the
boosted classifier.
java.lang.Exception
- if the classifier could not be built successfullypublic double[] distributionForInstance(Instance instance) throws java.lang.Exception
distributionForInstance
in class Classifier
instance
- the instance to be classified
java.lang.Exception
- if instance could not be classified
successfullypublic java.lang.String toSource(java.lang.String className) throws java.lang.Exception
toSource
in interface Sourcable
className
- the name that should be given to the source class.
java.lang.Exception
- if something goes wrongpublic java.lang.String toString()
toString
in class java.lang.Object
public static void main(java.lang.String[] argv)
argv
- the options
|
|||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | ||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |
Copyright (c) 2003 David Lindsay, Computer Learning Research Centre, Dept. Computer Science, Royal Holloway, University of London