|
|||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | ||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |
java.lang.Object | +--weka.classifiers.Classifier | +--weka.classifiers.SingleClassifierEnhancer | +--weka.classifiers.IteratedSingleClassifierEnhancer | +--weka.classifiers.RandomizableIteratedSingleClassifierEnhancer | +--weka.classifiers.meta.AdaBoostM1 | +--weka.classifiers.meta.MultiBoostAB
Class for boosting a classifier using the MultiBoosting method.
MultiBoosting is an extension to the highly successful AdaBoost
technique for forming decision committees. MultiBoosting can be
viewed as combining AdaBoost with wagging. It is able to harness
both AdaBoost's high bias and variance reduction with wagging's
superior variance reduction. Using C4.5 as the base learning
algorithm, Multi-boosting is demonstrated to produce decision
committees with lower error than either AdaBoost or wagging
significantly more often than the reverse over a large
representative cross-section of UCI data sets. It offers the
further advantage over AdaBoost of suiting parallel execution.
For more information, see
Geoffrey I. Webb (2000). MultiBoosting: A Technique for
Combining Boosting and Wagging. Machine Learning, 40(2):
159-196, Kluwer Academic Publishers, Boston
Valid options are:
-D
Turn on debugging output.
-W classname
Specify the full class name of a classifier as the basis for
boosting (required).
-I num
Set the number of boost iterations (default 10).
-P num
Set the percentage of weight mass used to build classifiers
(default 100).
-Q
Use resampling instead of reweighting.
-S seed
Random number seed for resampling (default 1).
-C subcommittees
Number of sub-committees. (Default 3),
Options after -- are passed to the designated classifier.
Constructor Summary | |
MultiBoostAB()
|
Method Summary | |
void |
buildClassifier(Instances training)
Method for building this classifier. |
int |
getNumSubCmtys()
Get the number of sub committees to use |
java.lang.String[] |
getOptions()
Gets the current settings of the Classifier. |
java.lang.String |
globalInfo()
Returns a string describing classifier |
java.util.Enumeration |
listOptions()
Returns an enumeration describing the available options |
static void |
main(java.lang.String[] argv)
Main method for testing this class. |
java.lang.String |
numSubCmtysTipText()
Returns the tip text for this property |
void |
setNumSubCmtys(int subc)
Set the number of sub committees to use |
void |
setOptions(java.lang.String[] options)
Parses a given list of options. |
java.lang.String |
toString()
Returns description of the boosted classifier. |
Methods inherited from class weka.classifiers.meta.AdaBoostM1 |
distributionForInstance, getUseResampling, getWeightThreshold, setUseResampling, setWeightThreshold, toSource, useResamplingTipText, weightThresholdTipText |
Methods inherited from class weka.classifiers.RandomizableIteratedSingleClassifierEnhancer |
getSeed, seedTipText, setSeed |
Methods inherited from class weka.classifiers.IteratedSingleClassifierEnhancer |
getNumIterations, numIterationsTipText, setNumIterations |
Methods inherited from class weka.classifiers.SingleClassifierEnhancer |
classifierTipText, getClassifier, setClassifier |
Methods inherited from class weka.classifiers.Classifier |
classifyInstance, debugTipText, forName, getDebug, makeCopies, setDebug |
Methods inherited from class java.lang.Object |
equals, getClass, hashCode, notify, notifyAll, wait, wait, wait |
Constructor Detail |
public MultiBoostAB()
Method Detail |
public java.lang.String globalInfo()
globalInfo
in class AdaBoostM1
public java.util.Enumeration listOptions()
listOptions
in interface OptionHandler
listOptions
in class AdaBoostM1
public void setOptions(java.lang.String[] options) throws java.lang.Exception
-D
Turn on debugging output.
-W classname
Specify the full class name of a classifier as the basis for
boosting (required).
-I num
Set the number of boost iterations (default 10).
-P num
Set the percentage of weight mass used to build classifiers
(default 100).
-Q
Use resampling instead of reweighting.
-S seed
Random number seed for resampling (default 1).
-C subcommittees
Number of sub-committees. (Default 3),
Options after -- are passed to the designated classifier.
setOptions
in interface OptionHandler
setOptions
in class AdaBoostM1
options
- the list of options as an array of strings
java.lang.Exception
- if an option is not supportedpublic java.lang.String[] getOptions()
getOptions
in interface OptionHandler
getOptions
in class AdaBoostM1
public java.lang.String numSubCmtysTipText()
public void setNumSubCmtys(int subc)
public int getNumSubCmtys()
public void buildClassifier(Instances training) throws java.lang.Exception
buildClassifier
in class AdaBoostM1
training
- the training data to be used for generating the
boosted classifier.
java.lang.Exception
- if the classifier could not be built successfullypublic java.lang.String toString()
toString
in class AdaBoostM1
public static void main(java.lang.String[] argv)
argv
- the options
|
|||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | ||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |
Copyright (c) 2003 David Lindsay, Computer Learning Research Centre, Dept. Computer Science, Royal Holloway, University of London